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Abstract. Oblivious Signature-Based Envelope (OSBE) has been widely em-
ployed for anonymity-orient and privacy-preserving applications. The conven-
tional OSBE execution relies on a secure communication channel to protect against
eavesdroppers. In TCC 2012, Blazy, Pointcheval and Vergnaud proposed a frame-
work of OSBE (BPV-OSBE) without requiring any secure channel by clarifying
and enhancing the OSBE security notions. They showed how to generically build
an OSBE scheme satisfying the new strong security in the standard model with
a common-reference string. Their framework requires 2-round interactions and
relies on the smooth projective hash function (SPHF) over special languages, i.e.,
languages from encryption of signatures. In this work, we investigate the study
on the strong OSBE and make the following contributions. First, we propose
a generic construction of one-round yet strong OSBE system. Compared to the
2-round BPV-OSBE, our one-round construction is more appealing, as its non-
interactive setting accommodates more application scenarios in the real word.
Moreover, our framework relies on the regular (identity-based) SPHF, which can
be instantiated from extensive languages and hence is more general. Second, we
also present an efficient instantiation, which is secure under the standard model
from classical assumptions, DDH and DBDH, to illustrate the feasibility of our
one-round framework. We remark that our construction is the first one-round
OSBE with strong security.
Keywords: Oblivious signature-based envelope, smooth projective hash func-
tion, privacy.

1 Introduction

In 2003, Li, Du and Boneh [25] introduced a new primitive namely Oblivious Signature-
Based Envelope (OSBE), which can be regarded as a nice way to ease the asymmetrical
aspect of several authentication protocols. One motivating scenario for OSBE is as fol-
lows: Alice is a regular entity without any specific affiliation. She wants to send a private
message to another party (named Bob) if that party possesses certain credentials, e.g.,
a certificate produced by an authority. For example, Alice might be a potential infor-
mant and Bob might be an agent of Central Intelligence Agency (CIA). However, due
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to the sensitive nature of CIA, Bob is unwilling, or not allowed, to reveal his creden-
tials. In this case, Alice and Bob are stuck and no session could be established. OSBE
protocols can well deal with the aforementioned scenario since it allows Alice to send
an envelope, which encapsulates her private message, to Bob in such a way that Bob
will be able to open the envelope and obtain the private message if and only if Bob has
possessed a credential, e.g., a signature on an agreed-upon message from CIA. In the
process, Alice cannot determine whether Bob does really belong to CIA (obliviousness)
and no other party learns anything about Alice’s private message (semantic security).

Three OSBE protocols were presented in [25]: RSA-OSBE, Rabin-OSBE and BLS-
OSBE. The last two protocols are one-round and derived from Identity-Based Encryp-
tion [8, 17] while RSA-OSBE is 2-round with some interesting properties. Although
these protocols satisfy the security requirements of the aforementioned scenario, they
implicitly require a secure channel during the execution to protect against eavesdrop-
pers. The reason is that an adversary may eavesdrop and replay a part of a previous
interaction to impersonate a CIA agent. Particularly, the Certification Authority who
has the signing key can reveal Alice’s private message by eavesdropping on the com-
munication between Alice and Bob. To eliminate the dependency on the secure channel
for the OSBE, in TCC 2012, Blazy, Pointcheval and Vergaud [7] clarified and enhanced
the security models of the OSBE by considering the security for both the sender and the
receiver against the authority. Their new strong notion, namely semantic security w.r.t.
the authority, requires that the authority who plays as the eavesdropper on the protocol,
learns nothing about the private message of the sender. They showed how to generically
build a 2-round OSBE scheme that can achieve the defined strong security in the stan-
dard model with a common-reference string (CRS), as well as an efficient instantiation
(BPV-OSBE) in the standard model from the classical assumption.

Motivations. Although the work in [7] can achieve stronger security than the conven-
tional OSBE protocols, we remark that their 2-round framework has some limitations
as follows.

– From a practical point of view, the 2-round OSBE framework requires the receiver
to send his obfuscated certificate/signature to the sender first and thereafter the
sender sends its envelope to the receiver. Despite that this setting is reasonable
in the interaction case, it might be unsuitable for some application scenarios. For
example, in the aforementioned scenario, as an informant, Alice would prefer to
send her envelope directly to the CIA agent, i.e., Bob, without contacting him in
advance, as Alice might be also unwilling to reveal her identity. However, no one-
round OSBE protocol with the strong security exists in the literature. It is thus
desirable to propose an OSBE protocol that is one-round yet with strong security.

– Theoretically, the main idea of the generic construction in [7] is to use the smooth
projective hash function (SPHF) on the special language defined by the encryption
of valid signatures. Precisely, the framework requires the underlying encryption
scheme to be semantically secure and the signature scheme to be existentially un-
forgeable. Although these schemes are quite common in reality, the framework does
require them to be of some additional properties when it comes to instantiations.
This is essentially due to the complex special language construction for the SPHF.
For example, in the instantiation (BPV-OSBE) shown in [7], a linear encryption
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Table 1. Comparisons with Existing OSBE Protocols

Protocols Round Comp. Comm. Security Assumptions
O.A. S.S. S.S.A.

RSA-OSBE[25] 2 4E+4M 2ZN+P
√ √

×∗ R.O,CDH
Rabin-OSBE[25] 1 4|P | · E 2|P | · ZN

√ √
× R.O.,QR

BLS-OSBE[25] 1 3E+2P G1+2P
√ √

× R.O.,BDH
BPV-OSBE[7] 2 12E+8M+6P 6G1+P

√ √ √
CDH,DLin

Our Protocol 1 5E+3M+2P 2G1+3GT+P
√ √ √

DDH,DBDH
a We use E to denote exponentiation, M the multiplication, P the pairing computation, P the private message.
b For the column of Security, O.A. denotes the security of obliviousness w.r.t the authority, S.S. denotes the security

of semantic security and S.S.A. denotes the strong security of semantic security w.r.t. the authority.
c For the column of Assumption, R.O. denotes the random oracle assumption.

and a re-randomizable signature is used as the building blocks to achieve the strong
security. Therefore, in some sense, the framework is somewhat not general due to
the above instantiating limitation.

Based on the aforementioned observations, we can conclude that designing a one-
round yet general OSBE framework with strong security is of practical and theoretical
importance. In this paper, we are interested in such an OSBE protocol that is secure in
the standard model from classical assumptions.

Our Contributions. In this work, we make the following contributions.

– A Generic One-Round OSBE with Strong Security. We propose a generic construc-
tion of one-round OSBE system of the strong security with a CRS. Compared to
the 2-round framework in [7], our one-round construction is more appealing, as
its non-interactive setting can accommodate more application scenarios in the real
word. Moreover, our framework relies on the regular (IB-)SPHF, which can be in-
stantiated from extensive languages and hence is more general than the work in [7]
where special languages, i.e., languages from encryption of signatures are needed
for instantiations.

– An Efficient Instantiation from Classical Assumptions. An efficient instantiation
secure in the standard model from classical assumptions, DDH and DBDH, is pre-
sented to illustrate the feasibility of our generic construction. As shown in Table 1,
our one-round protocol is of the same strong security as the BPV-OSBE [7] while
the protocols in [25] are under the random oracle model and fail to achieve the se-
mantic security w.r.t. the authority. It is worth noting that, as remarked in [7], the
authority in the 2-round RSA-OSBE protocol can break the scheme by generating
the RSA modulus N = pq dishonestly. In terms of the efficiency, the communica-
tion complexity in our protocol is comparable to that of the BPV-OSBE [7] while
our computation (include both the sender and the receiver) is much more efficient.

Technique Overview. Our central idea is to utilize the conjunction of an SPHF and
an identity-based SPHF (IB-SPHF) for the protocol construction. The definition of an
SPHF [19] requires the existence of a domain X and an underlying NP language L,
where elements of L form a subset of X , i.e., L ⊂ X . The key property of SPHF is that
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the hash value of any word W ∈ L can be computed by using either a secret hashing
key, or a public projection key with the witness to the fact that W ∈ L (correctness).
However, the projection key gives almost no information about the hash value of any
point in X \ L (smoothness). Moreover, we say that the subset membership problem
is hard if the distribution of L is computationally indistinguishable from X \ L. Sim-
ilarly, an IB-SPHF [4, 9] has the above properties except that its underlying language
is usually associated to the identity which also acts as the public projection key. The
secret (identity) hashing key is then derived based on the identity using a master secret
key. The IB-SPHF system has formed the backbone of many IBE schemes [16, 18, 21,
9, 22], which, as shown in [8], give rise to the signature scheme. The master secret key
plays as the signing key and each message is viewed as an identity. The signature is the
private key corresponding to the identity.

Our construction deserves further interpretation. Precisely, the receiver owns a hash-
ing key pair (hk, hp) belonging to the SPHF system while the authority has a master
key pair (msk,mpk) belonging to the IB-SPHF system. The authority can use msk to
issue the receiver a valid signature on any agreed-upon message (denoted as M ), which
is viewed as the identity in the IB-SPHF system. The CRS in our system contains both
hp and mpk. To send a message P , the sender firstly samples two distinct words for
the SPHF and the IB-SPHF respectively and derives the hash value of each word us-
ing hp and M (the identity) with their witnesses to conceal P into the envelope. The
sender then sends the two words with the concealed P to the receiver. Upon receiving
the message, the receiver uses hk and the valid signature (i.e., identity private key) of
M to compute the hash value of the words and thereafter reveals P . One can note that
the correctness of our framework relies on the correctness of the underlying SPHF and
IB-SPHF. The obliviousness is clear in our one-round framework since the sender does
not receive any information from the receiver. The semantic security is guaranteed by
the smoothness and the hard subset membership problem of the IB-SPHF while the
semantic security w.r.t. the authority is due to the underlying SPHF system.

Organization. The rest of this paper is organized as follows. We review some prim-
itives, including the definition of SPHF and IB-SPHF in Section 2, and introduce a
generic construction of one-round strong OSBE with formal security analysis in Sec-
tion 3. An efficient instantiation of our framework is then given in Section 4. We then
conclude our work in Section 5.

2 Preliminaries

2.1 Notations and Assumptions

Through this paper, ` denotes the security parameter. For a finite set Ω, ω $← Ω denotes
that ω is selected uniformly from Ω while ω R← Ω denotes that ω is picked randomly
from Ω. Let X and Y be two random variables over a finite domain Ω, the statistical
distance between X and Y is defined as SD(X,Y ) = 1

2

∑
ω∈Ω |Pr[X = ω]−Pr[Y =

ω]|. We say that X and Y are ε-statistically indistinguishable if SD(X,Y ) ≤ ε and for
simplicity we denote it by X

s≡ Y .
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Definition 1 (Decisional Diffie-Hellman (DDH) Assumption). Let G be a general
cyclic group of prime order p and g1, g2 ∈ G the generators of G. Given (g1, g2), we
say that the decisional Diffie-Hellman assumption holds on G if for any PPT adversary
A,

AdvDDH
A (`) = |Pr[A(gr11 , g

r1
2 ) = 1]− Pr[A(gr11 , g

r2
2 ) = 1]| ≤ negl(`)

where the probability is taken over the random choices r1, r2
R← Zp and the bits con-

sumed by the adversary A.

Let G1,GT be two multiplicative groups with the same prime order p. Let g be the
generator of G1 and I be the identity element of GT . A symmetric bilinear map is a map
e : G1 × G1 → GT such that e(ua, vb) = e(u, v)ab for all u, v ∈ G1 and a, b ∈ Zp.
It is worth noting that e can be efficiently computed and e(g, g) 6= I . We assume the
existence of a group-generation algorithm BG(1`) which takes as input 1` and outputs
a tuple (G1,GT , g, e(·, ·), p) where G1,GT are of prime order p.

Definition 2 (Decisional Bilinear Diffie-Hellman (DBDH) Assumption). Let (G1,GT ,
g, e(·, ·), p) ← BG(1`). Given D = (g, gx, gy, gz), we say that the decisional bilinear
Diffie-Hellman assumption holds on G if for any PPT adversary A,

AdvDBDH
A (`) = |Pr[A(D, e(g, g)xyz) = 1]− Pr[A(D, e(g, g)r) = 1]| ≤ negl(`)

where the probability is taken over the random choices x, y, z, r R← Zp and the bits
consumed by the adversary A.

2.2 Smooth Projective Hash Functions

Smooth projective hash function (SPHF) is originally introduced by Cramer and Shoup
[19] and extended for constructions of many cryptographic primitives [20, 23, 24, 3, 1,
5, 10, 2, 11, 6]. We start with the original definition.

An SPHF is based on a domain X and an NP language L, where L contains a
subset of the elements of the domain X , i.e., L ⊂ X . An SPHF system over a language
L ⊂ X , onto a set Y , is defined by the following five algorithms (SPHFSetup,HashKG,
ProjKG,Hash,ProjHash):

(param,L) ← SPHFSetup(1`) : The SPHFSetup algorithm takes as input a security
parameter ` and generates the global parameters param and the description of an
NP language L. All other algorithms HashKG,ProjKG,Hash,ProjHash implicitly
include (L, param) as input.

hk← HashKG : The HashKG algorithm generates a hashing key hk;

hp← ProjKG(hk) : The ProjKG algorithm derives the projection key hp from the hashing
key hk;

hv ← Hash(hk,W ) : The Hash algorithm takes as input a word W and the hashing key
hk, outputs the hash value hv ∈ Y;

hv ← ProjHash(hp,W,w) : The ProjHash algorithm takes as input the projection key
hp and a word W with the witness w to the fact that W ∈ L, outputs the hash value
hv ∈ Y .
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An SPHF should satisfies the following properties.

Correctness. Formally, for any wordW ∈ Lwithw the witness, we have Hash(hk,W ) =
ProjHash(hp,W,w).
Smoothness. For anyW ′ ∈ X\L, the following two distributions are statistically indis-

tinguishable, i.e.,V1
$≡ V2, where V1 = {(L, param,W ′, hp, hv)|hv = Hash(hk,W ′)},

and V2 = {(L, param,W ′, hp, hv)|hv $← Y}. Precisely, the quantity of Advsmooth
SPHF (`) =∑

v∈Y |PrV1 [hv = v]− PrV2 [hv = v]| is negligible.
For cryptographic purposes, we normally requires the NP language L to be mem-

bership indistinguishable, which is formally defined as follows.
Definition 3 (Hard SMP for SPHF). The subset membership problem (SMP) is hard
on (X ,L) for an SPHF that consists of (SPHFSetup, HashKG, ProjKG,Hash, ProjHash),
if for any PPT adversary A,

AdvSMP
A,SPHF(`) = Pr

b′ = b :

(param,L)← SPHFSetup(1`);
hk← HashKG; hp← ProjKG(hk);

b
R← {0, 1};

W0
$← X\L;W1

$← L;
b′ ← A(param,L, hk, hp,Wb)

−
1

2
≤ negl(`),

2.3 Identity-Based Smooth Projective Hash Function

The paradigm of IB-SPHF firstly appeared in [9], where the IB-SPHF is viewed as an
SPHF with trapdoor. It was later shown as an identity-based key encapsulation mecha-
nism (IB-KEM) with some special algebraic properties in [4]. IB-SPHF and its exten-
sions have been well applied for cryptographic constructions [16, 13, 12, 14, 15].

It is worth noting that most, if not all, IB-SPHF systems require the underlying
language L to depend on the projection key, i.e., the identity. To encompass a broad
class of IB-SPHF systems, we associate the language to the identity and refer LID ⊂
XID to the language for an identity ID. An IB-SPHF system over LID ⊂ XID, onto a
set Y , is defined by the following algorithms (IB-SPHFSetup, IB-HashKG, IB-Hash,
IB-ProjHash):

(param,LID, (msk,mpk)) ← IB-SPHFSetup(1`) : The IB-SPHFSetup algorithm takes
as input a security parameter ` and generates the global parameters param with the
description of an NP language LID. It outputs the master public key mpk and the
master secret key msk. The master public key defines an identity set ID. All other
algorithms IB-HashKG, IB-Hash, IB-ProjHash implicitly include (LID, param,mpk)
as input.

hkID ← IB-HashKG(ID,msk) : For any identity ID ∈ ID, the IB-HashKG algorithm uses
the master secret key msk to generates an identity hashing key hkID;

hv← IB-Hash(hkID,W ) : The IB-Hash algorithm takes as input a wordW and the identity
hashing key hkID, outputs the hash value hv ∈ Y;

hv ← IB-ProjHash(ID,W,w) : The IB-ProjHash algorithm takes as input the identity ID
and a word W with the witness w to the fact that W ∈ LID, outputs the hash value
hv ∈ Y .
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The properties of IB-SPHF are similar to that of an SPHF system, i.e.,

– Correctness. For any values of msk,mpk produced by IB-SPHFSetup and ID ∈ ID
and wordW ∈ LID withw the witness, we have IB-Hash(hkID,W ) = IB-ProjHash
(ID,W,w).

– Smoothness. For any ID ∈ ID and any W ′ ∈ XID\LID, the following two distribu-

tions are statistically indistinguishable, i.e.,V1
$≡ V2, where V1 = {(L, param,mpk,

W ′, ID,HK, hvID)|hvID = IB-Hash(hkID,W ′)}, and V2 = {(L, param,mpk,W ′,

ID,HK, hvID)|hvID
$← Y}. Here HK is the set of identity hashing key for any iden-

tity ID′ ∈ ID and ID′ 6= ID. Precisely, the quantity of Advsmooth
IB-SPHF(`) =

∑
v∈Y |PrV1

[hv = v]− PrV2 [hv = v]| is negligible.

Definition 4 (Hard SMP for IB-SPHF ). The subset membership problem (SMP) is
hard on (XID,LID) for an IB-SPHF which consists of (IB-SPHFSetup, IB-HashKG,
IB-Hash, IB-ProjHash), if for any PPT adversary A,

AdvSMP
A,IB-SPHF(`) = Pr

b′ = b :

hkID ← IB-HashKG(ID,msk);

b
R← {0, 1};

W0
$← LID;W1

$← XID\LID;

b′ ← AOreveal(·)(param,LID,mpk, ID,Wb)

−1/2 ≤ negl(`),

where msk,mpk is produced by IB-SPHFSetup andOreveal(·) is an oracle that on input
of any id ∈ ID, returns hkid ← IB-HashKG(id,msk).

3 A Generic One-Round Strong OSBE

In this section, we first briefly introduce the Oblivious Signature-Based Envelope, as
well as the formal security models. We then show the first generic construction of one-
round OSBE with strong security.

3.1 Oblivious Signature-Based Envelope

An OSBE protocol involves two parties, i.e., a sender S and a recipient R. S wants
to send a private message P to the recipient R so that R can receive P if and only
if he/she possesses a certificated/signature on a predefined message M . The formal
definition is as follows. We mainly follow the definition in [25] to accommodate our
generic one-round construction which is introduced in Section 3.2. We remark that the
new framework captures all the required properties defined in [25, 7].

Definition 5 (Oblivious Signature-Based Envelope). An OSBE scheme is defined by
an algorithm OSBESetup and an interactive protocol OSBEProtocol < S,R >.

– OSBESetup(1`) : The OSBESetup algorithm takes as input the security parameter
`, generates the global parameters param, and the master key pair (mpk,msk)
for the authority. The receiver R is issued a certificate/signature σ on M by the
authority.
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– OSBEProtocol < S(M,P ),R(M,σ) >: The OSBEProtocol is an interactive pro-
tocol between the sender S with a private message P , and the receiver R with a
certificate/signature σ. At the end of the protocol, R receives P if σ is a valid
certificate/signature on M , otherwise it learns nothing.

The correctness of an OSBE scheme requires that at the end of OSBEProtocol, the
authorized receiverR (who has a valid certificate/signature σ on M ) can output P .

Security Notions for Strong OSBE. According to the original definition [25], in ad-
ditional to the correctness, an OSBE scheme must satisfy obliviousness and semantic
security. In this work, we are interested in the strong OSBE scheme that should also
satisfy another two security properties—obliviousness w.r.t. the authority and semantic
security w.r.t. the authority, which are defined in [7].

Obliviousness (w.r.t. the Authority). Below we first briefly describe the notions of
obliviousness and obliviousness w.r.t the authority. The obliviousness requires that the
sender S should not be able to distinguish whetherR uses a valid certificate/signature or
not during the protocol execution. The obliviousness w.r.t. the authority requires that the
above indistinguishability should also hold to the authority who plays as the sender or
just eavesdrops on the protocol. One can easily notice that the latter notion is stronger
than the former one and both of them can be trivially achieved in one-round OSBE
schemes, since S receives no information fromR.

We now formally introduce the security notions of semantic security and semantic
security w.r.t. the authority.

Semantic Security. This security is against the malicious receiver. Roughly speaking, it
requires that at the end of the protocol,R learns nothing about the private input P of S
if it does not use a valid certificate/signature on the predefined message M . The formal
security game between the challenge C and the adversary A is defined as follows.

Setup. C runs OSBESetup(1`) and sends A the global parameters param.

Query. A can issues the following two queries:

– Sign-Query. On input of M , C returns the valid signature σM of M to A.
– Exec-Query. On input of (M,P ), C first generates σM of M , runs OSBEProtocol <
S(M,P ),R(M,σM ) > and returns the transcript to A.

Challenge. A chooses a predefined message M∗ which has not been queried for signature
by A, with two challenge message P0, P1 and sends them to C. C randomly chooses a

bit b $← {0, 1} and runs OSBEProtocol < S(M∗, Pb),A >.

Query. A continues the query defined above, except that it cannot query M∗ for signature.

Guess. Finally, A outputs b′ as its guess on b and wins the game if b′ = b.

We define the advantage ofA in the above game as AdvSSA,OSBE(`) = Pr[b = b′]− 1
2 .

Semantic Security w.r.t. the Authority. This security is against the malicious authority.
Roughly speaking, it requires that at the end of the protocol, the authority who plays
as the eavesdropper on the protocol, learns nothing about the private input P of S.
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The formal security game between the challenge C and the adversary A is defined as
follows.

Setup. C runs OSBESetup(1`) and sends A the global paramters param with the master
secret key msk.

Query.A issues an Exec query with chosen input (M,P, σM ). To answer this query, C runs
OSBEProtocol < S(M,P ),R(M,σM ) > and returns the transcript to A.

Challenge. A chooses a predefined message M∗ with two challenge message P0, P1 and

sends them to C. C randomly chooses a bit b $← {0, 1} and runs OSBEProtocol <
S(M∗, Pb),R(M∗, σM∗) > which A can access to its interaction transcript.

Query. A continues the Exec query as defined above.

Guess. Finally, A outputs b′ as its guess on b and wins the game if b′ = b.

We define the advantage of A in the above game as AdvSS-Authority
A,OSBE (`) = Pr[b =

b′]− 1
2 .

Definition 6 (Secure OSBE). An OSBE scheme is secure if it is oblivious w.r.t. the
authority and for any probabilistic polynomial-time adversariesA, both AdvSSA,OSBE(`)

and AdvSS-Authority
A,OSBE (`) are negligible in `.

Remark. One may note that our security notions appear to be different from [7], where
the adversary can access several queries in addition to the original models [25]. The
reason is that our defined OSBE scheme follows the original one while the work in
[7] revised the OSBE framework to accommodate its proposed construction. However,
we insist that our models are essentially as strong as the notions defined in [7]. The
enhanced semantic security (denoted sem) in [7] allows the adversary to obtain several
interactions between the server and the receiver with a valid certificate/signature while
the adversary in our notion is provided with the access to a so-called Exec oracle which
returns the transcript of the honest interaction with adaptively chosen input (M,P )
from the adversary. It is worth noting that we put no restriction on the Exec query input
(M,P ) fromA. In particular,A can make query with input the challenge messages, i.e.,
M = M∗ and P = P0/P1. Moreover, the Sign query through which A can obtain the
signature of any non-challenge predefined message is also defined in both our model
and the experiment in [7]. Similarly, the adversary in our defined notion of semantic
security w.r.t. the authority can also query the Exec oracle for the transcripts of any
specified interaction. We therefore remark that our defined models capture the same
security properties as those do in [7].

3.2 The Generic One-round Construction

We present a generic construction of OSBE from the conjunction of an SPHF and an
IB-SPHF. Let SPHF = (SPHFSetup,HashKG,ProjKG,Hash, ProjHash) be a smooth
projective hash function over L ⊂ X and IB-SPHF = (IB-SPHFSetup, IB-HashKG,
IB-Hash, IB-ProjHash) be an identity-based smooth projective hash function overLID ⊂
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XID. Suppose both systems are onto the same set Y . We additionally use a key deriva-
tion function KDF for the generation of a pseudo-random bit-string as the encryption
key for the private message. The generic construction of an one-round OSBE protocol
on a predefined message M and a private message p is as follows.

– OSBESetup(1`) : The OSBESetup takes as input a security parameter `.
• It first generates the individual parameters as SPHFSetup(1`) →

(param1,L), IB-SPHFSetup(1`) → (param2,LID, (msk,mpk)). The mas-
ter key pair (msk,mpk) is for the authority.

• It generates a key pair (hk, hp) for the SPHF system as HashKG →
hk,ProjKG(hk)→ hp. The hash key pair (hk, hp) is produced for the receiver.

• The authority issues a signature σ = hkM (by viewing M as the identity) as
IB-HashKG(msk,M)→ hkM . A valid receiver is then given the signature σ.

The output global parameters param = (param1, param2,L,LID,mpk, hp). All the
algorithms involved in the protocol OSBEProtocol implicitly include param as input.

– OSBEProtocol < S(M,P ),R(M,σ) >: The OSBEProtocol executes as follows:
• S picks W1 ← L,W2 ← LM with w1, w2 the witnesses respectively and com-

putes
V = ProjHash(hp,W1, w1)⊕ IB-ProjHash(M,W2, w2),

Q = P ⊕ KDF(V ).

S then sends (W1,W2, Q) toR;
• Upon receiving (W1,W2, Q),R computes,

V ′ = Hash(hk,W1)⊕ IB-Hash(hkM ,W2),

P ′ = Q⊕ KDF(V ′).

3.3 Security Analysis

We show that the generic construction is secure under our defined models .

Theorem 1 (Correctness). The generic OSBE construction is correct.

Proof. Due to the correctness of SPHF and IB-SPHF, we have that

ProjHash(hp,W1, w1)⊕ IB-ProjHash(M,W2, w2) = Hash(hk,W1)⊕ IB-Hash(hkM ,W2),

i.e., V = V ′ and thus P ′ = P ⊕ KDF(V )⊕ KDF(V ′) = P .

Theorem 2 (Obliviousness w.r.t. the Authority). The generic OSBE construction is
oblivious w.r.t. the authority.

Proof. This property is trivial since the protocol is one-round and the server S receives
no information from the receiverR during the protocol execution.

Theorem 3 (Semantic Security). The generic OSBE construction is semantically se-
cure if the SMP is hard on (XM ,LM ) for IB-SPHF (and under the pseudo-randomness
of KDF).
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Proof. Let A be an adversary against the semantic security of our construction with
advantage AdvSSA,OSBE(`). We define a sequence of games between the challenger C and
A as follows.

Game G0. In this game, C simulates as follows.

– Setup. C runs OSBESetup(1`) and outputs the global parameter param with the
receiver secret key hk to A. C keeps the master secret key msk itself.

– Query. C answers the query as follows.
• Sign-Query. On input of M from A, C computes IB-HashKG(msk,M) →
hkM , and then returns hkM to A;

• Exec-Query. On input of (M,P ) from A, C randomly picks W1
$← L,W2

$←
LM withw1, w2 the witnesses respectively. C then computes V = ProjHash(hp,
W1, w1)⊕IB-ProjHash(M,W2, w2), Q = P⊕KDF(V ) and then sends (W1,W2,
Q) to A;

– Challenge. A chooses a predefined message M∗ that is not issued to the Sign ora-
cle, with two challenge message P0, P1 and sends them to C. C randomly chooses

a bit b $← {0, 1} and picks W ∗1 ← L,W ∗2 ← LM∗ with w∗1 , w
∗
2 the witnesses

respectively and computes

V ∗ = ProjHash(hp,W ∗1 , w
∗
1)⊕IB-ProjHash(M∗,W ∗2 , w

∗
2), Q

∗ = Pb⊕KDF(V ∗).

C then sends (W ∗1 ,W
∗
2 , Q

∗) to A;
– Query. C simulates as defined above.
– Output. Finally, A outputs b′ as its guess on b.

We define the advantage of A in game G0 as AdvG0A,OSBE(`). One can note the defini-
tion of game G0 is exactly the original model of semantic security and thus we have
AdvG0A,OSBE(`) = AdvSSA,OSBE(`).
Game G1. Let game G1 be the same game as G0, except that in the challenge stage,

instead of choosing W ∗2
$← LM∗ , C chooses W ∗2

$← XM∗\LM∗ and computes V ∗ as
V ∗ = ProjHash(hp,W ∗1 , w

∗
1)⊕ IB-Hash(hkM∗ ,W ∗2 ). Due to the hard subset member-

ship problem and the correctness of IB-SPHF, we have |AdvG1A,OSBE(`)−Adv
G0
A,OSBE(`)| ≤

AdvSMP
A,IB-SPHF(`).

Game G2. Let game G2 be the same game as G1, except that in the challenge stage, C
computes V ∗ as V ∗ = ProjHash(hp,W ∗1 , w

∗
1) ⊕ r, where r $← Y . Due to the smooth-

ness of IB-SPHF, we have |AdvG2A,OSBE(`)− AdvG1A,OSBE(`)| ≤ Advsmooth
IB-SPHF(`).

Game G3. Let game G3 be the same game as G2, except that C computes Q∗ = Pb ⊕R
where R $← {0, 1}l. Due to the pseudo-randomness of KDF, we have |AdvG3A,OSBE(`)−
AdvG2A,OSBE(`)| ≤ AdvPRA,KDF(`).

Game G4. Let game G4 be the same game as G3, except that C computes Q∗ $←
{0, 1}l. One can note that AdvG3A,OSBE(`) = AdvG4A,OSBE(`). It is easy to see that A
can only wins with probability at most 1/2 as Q∗ is independent of b and hence we
have AdvG4A,OSBE(`) = 0.

Therefore, from game G0,G1,G2,G3 and G4, we have that AdvSSA,OSBE(`) is negligi-
ble, which completes the proof.
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Theorem 4 (Semantic Security w.r.t. the Authority). The generic OSBE construction
is semantically secure w.r.t. the authority if the SMP is hard on (X ,L) for SPHF (and
under the pseudo-randomness of KDF).

Proof. Let A be an adversary against the semantic security w.r.t. the authority of our
construction with advantage AdvSS-Authority

A,OSBE (`). We define a sequence of games between
the challenger C and A as follows.

Game G0. In this game, C simulates as follows

– Setup. C runs OSBESetup(1`) and outputs the global parameter param with the
master secrete key msk to A. C keeps the hashing key hk itself.

– Query. On input of (M,P, σM ) from A for an Exec query, C randomly picks

W1
$← L,W2

$← LM with w1, w2 the witnesses respectively and computes V =
ProjHash(hp,W1, w1) ⊕ IB-ProjHash(M,W2, w2), Q = P ⊕ KDF(V ). C then
sends (W1,W2, Q) to A;

– Challenge.A chooses a predefined messageM∗ with two challenge messageP0, P1

and sends them to C. C randomly chooses a bit b $← {0, 1} and picks W ∗1 ←
L,W ∗2 ← LM∗ withw∗1 , w

∗
2 the witnesses respectively and computes V ∗ = ProjHash

(hp,W ∗1 , w
∗
1) ⊕ IB-ProjHash(M∗,W ∗2 , w

∗
2), Q

∗ = Pb ⊕ KDF(V ∗). C then sends
(W ∗1 ,W

∗
2 , Q

∗) to A;
– Query. C simulates as defined above.
– Output. Finally, A outputs b′ as its guess on b.

We define the advantage of A in game G0 as AdvG0A,OSBE(`). One can note the defini-
tion of game G0 is exactly the original model of semantic security and thus we have
AdvG0A,OSBE(`) = AdvSS-Authority

A,OSBE (`).

Game G1. Let game G1 be the same game as G0, except that in the challenge stage,

instead of choosing W ∗1
$← L, C chooses W ∗1

$← X\L and computes V ∗ as V ∗ =
Hash(hk,W ∗1 )⊕ IB-ProjHash(M∗,W ∗2 , w

∗
2).Due to the hard subset membership prob-

lem and the correctness of SPHF, we have |AdvG1A,OSBE(`)−Adv
G0
A,OSBE(`)| ≤ AdvSMP

A,SPHF(`).

Game G2. Let game G2 be the same game as G1, except that in the challenge stage,

C computes V ∗ as V ∗ = r ⊕ IB-ProjHash(M∗,W ∗2 , w
∗
2), where r $← Y . Due to the

smoothness of SPHF, we have |AdvG2A,OSBE(`)− AdvG1A,OSBE(`)| ≤ Advsmooth
SPHF (`).

Game G3. Let game G3 be the same game as G2, except that C computes Q∗ = Pb ⊕R
where R $← {0, 1}l. Due to the pseudo-randomness of KDF, we have |AdvG3A,OSBE(`)−
AdvG2A,OSBE(`)| ≤ AdvPRA,KDF(`).

Game G4. Let game G4 be the same game as G3, except that C computes Q∗ $←
{0, 1}l. One can note that AdvG3A,OSBE(`) = AdvG4A,OSBE(`). It is easy to see that A
can only wins with probability at most 1/2 as Q∗ is independent of b and hence we
have AdvG4A,OSBE(`) = 0.

Therefore, from game G0,G1,G2,G3 and G4, we have that AdvSS-Authority
A,OSBE (`) is neg-

ligible, which completes the proof.
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Based on the results of Theorem 1, Theorem 2,Theorem 3 and Theorem 4, we
then have the following conclusion.

Theorem 5. The generic OSBE construction is secure if both SPHF and IB-SPHF are
over hard subset membership problem (and under the pseudo-randomness of KDF).

4 Our Efficient OSBE Instantiation

In this section, we presented a concrete OSBE protocol based on the DDH assumption
and DBDH assumption.

4.1 Instantiating the Building Blocks

Due to the space limitation, we briefly describe the instantiations of SPHF and IB-SPHF
from the DDH assumption and DBDH assumption respectively and refer the reader to
the full version for more details.
DDH-Based SPHF. We first introduce the Diffie Hellman language LDH as follows. Let
G be a group of prime order p and g1, g2 be the generators of G.

LDH = {(u1, u2)|∃r ∈ Zp, s.t., u1 = gr1, u2 = gr2}

One can see that the witness space of LDH is Zp and LDH ⊂ G2. Below we show an
concrete SPHF (denoted by SPHFDH) over the language LDH ⊂ XDH = G2 onto the
group Y = G.

SPHFSetup(1`) : Set param = (G, p, g1, g2);

HashKG : Pick (α1, α2)
$← Z2

p. Output hk = (α1, α2);

ProjKG(hk) : Compute hp = gα1
1 gα2

2 ;

Hash(hk,W ) : For a word W = (u1, u2), output hv = uα1
1 uα2

2 ;

ProjHash(hp,W,w) : For a word W = (gr1 , g
r
2) , output hv = hpr = (gα1

1 gα2
2 )r .

DBDH-Based IB-SPHF. We introduce the language for our instantiated IB-SPHF, which
can be viewed as the backbone of the IBE scheme in [16]. Let (G1,GT , g, e(·, ·), p)←
BG(1`), u, h ∈ G1, α, β ∈ Zp. For any ID ∈ ID, the associated language LID ⊂ XID

are,

LID = {(u1, u2, u3)|∃z ∈ Zp, s.t., u1 = gz, u2 = (uIDh)z, u3 = e(g, g)βz}

XID = {(u1, u2, u3)|∃z1, z2 ∈ Zp, s.t., u1 = gz1 , u2 = (uIDh)z1 , u3 = e(g, g)βz2}

One can see that the witness space is Zp and LID ⊂ G1 × G1 × GT . Below we show
the resulted IB-SPHF (denoted by IB-SPHF) over the language LID ⊂ XID onto the
group Y = GT .
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IB-SPHFSetup(1`) : Let (G1,GT , g, e(·, ·), p) ← BG(1`). Pick u, h $← G1, α, β
$← Zp,

set param = (G1,GT , g, e(·, ·), p, u, h), msk = (α, β),mpk = (e(g, g)α, e(g, g)β).
The identity set is ID = Zp.

IB-HashKG(ID,msk) : For ID ∈ Zp, choose t, r $← Zp. Output hkID = (sk1, sk2, sk3) =
(gαg−βt(uIDh)r, g−r, t);

IB-Hash(hkID,W ) : For a word W = (u1, u2, u3), output hvID =
e(u1, sk1)e(u2, sk2)u

sk3
3 ;

IB-ProjHash(ID,W,w) : For a word W = (u1, u2, u3) = (gz, (uIDh)z, e(g, g)βz), out-
puts hvID = e(g, g)αz .

4.2 Concrete OSBE Protocol

Using SPHFDH and IB-SPHF as instantiation blocks, below we show the resulted
OSBE protocol, where a sender S wants to send a private message P ∈ {0, 1}l to a
recipientR in possession of a signature (i.e., the identity hashing key) on a messageM .

– OSBESetup(1`) : Let G be a group of prime order p and g1, g2 the generators
of G and set param1 = (G, p, g1, g2). Let (G1,GT , g, e(·, ·), p) ← BG(1`), pick

u, h
$← G1, α, β

$← Zp, set param2 = (G1,GT , g, e(·, ·), p, u, h) and set msk =
(α, β),mpk = (e(g, g)α, e(g, g)β).

• Pick (α1, α2)
$← Zp, compute hk = (α1, α2), hp = gα1

1 gα2
2 . Set (hk, hp) as the

receiver key pair.

• For any predefined messageM ∈ Zp, choose t, r $← Zp and compute its signature
as σ = hkM = (sk1, sk2, sk3) = (gαg−βt(uMh)r, g−r, t)

– OSBEProtocol < S(M,P ),R(M,σ) >:
• S picks W1 = (û1, û2) = (gr1 , g

r
2),W2 = (u1, u2, u3) =

(gz, (uMh)z, e(g, g)βz) and computes

V = (gα1
1 gα2

2 )r · e(g, g)αz, Q = P ⊕ KDF(V ).

S then sends (W1,W2, Q) toR;
• Upon receiving (W1,W2, Q),R computes,

V ′ = (û1
α1 û2

α2) · (e(u1, sk1)e(u2, sk2)u
sk3
3 ),

P ′ = Q⊕ KDF(V ′).

One should note that in the above concrete protocol, we requires the language used
in our SPHFDH works on the GT , i.e., the DDH assumption is on G = GT .

The correctness of the above protocol is guaranteed by the correctness of SPHFDH

and IB-SPHF while the oblivious w.r.t. the authority is clear due to the one-round
execution. Based on Theorem 5, we have the following conclusion.
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Theorem 6. The instantiated OSBE protocol is secure under the DDH,DBDH assump-
tions (and the pseudo-randomness of KDF).

Efficiency. Our one-round protocol requires only one flow from the sender S during the
execution. Precisely, in addition to the l-bit string (i.e., Q) for the masked P ∈ {0, 1}l,
the communication in our protocol consists of 2 elements in G1 and 3 elements in GT
and hence is slightly higher than the BPV-OSBE protocol [7], where 6 elements in G1

are needed per execution. It is worth noting that by using a hash function H : G→ GT
on the computation of V , i.e., letting V = H((gα1

1 gα2
2 )r) · e(g, g)αz , we can reduce

the communication cost of our protocol, as the language used by the SPHFDH is now
on the smaller group G, instead of GT . Regarding the computation cost, we remark
that our protocol is much more efficient that the BPV-OSBE protocol. Particularly, our
protocol mainly requires 5 exponentiation, 3 multiplication and only 2 pairing compu-
tation in total per execution while the BPV-OSBE protocol needs 12 exponentiation, 8
multiplication and 6 pairing computation.

5 Conclusion

In this work, we mainly improved the work from TCC 2012 [7] and presented a generic
construction of one-round OSBE system that is strongly secure with a common refer-
ence string. Compared to the 2-round framework in [7], our one-round construction is
more appealing due to the fact that its non-interactive setting accommodates more ap-
plication scenarios in the real word. Moreover, our framework relies on the (IB-)SPHF,
which can be instantiated from extensive languages and hence is more general than
the work in [7] where special languages, i.e., languages of ciphertexts from signatures
are needed for instantiations. An efficient instantiation, which is secure under the stan-
dard model from classical assumptions, DDH and DBDH, is also shown to illustrate the
feasibility of our one-round framework.
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