123 research outputs found
Color Magnetic Corrections to Quark Model Valence Distributions
We calculate order color magnetic corrections to the valence quark
distributions of the proton using the Los Alamos Model Potential wavefunctions.
The spin-spin interaction breaks the model SU(4) symmetry, providing a natural
mechanism for the difference between the up and down distributions. For a value
of sufficient to produce the mass splitting, we find up
and down quark distributions in reasonable agreement with experiment.Comment: 25 Pages, LA-UR-93-132
Charge Symmetry Breaking in the Valence Quark Distributions of the Nucleon
Using a quark model, we study the effect of charge symmetry breaking on the
valence quark distributions of the nucleon. The effect due to quark mass
differences and the Coulomb interaction of the electrically charged quarks is
calculated and, in contrast to recent claims, found to be small. In addition,
we investigate the effect of charge symmetry breaking in the confining
interaction, and in the perturbative evolution equations used to relate the
quark model distributions to experiment. We find that both these effects are
small, and that the strong charge symmetry breaking effect included in the
scalar confining interactions may be distinguishable from that generated by
quark mass differences.Comment: 10 pages, LaTEX, 5 Postscript figure
Flavor and Charge Symmetry in the Parton Distributions of the Nucleon
Recent calculations of charge symmetry violation(CSV) in the valence quark
distributions of the nucleon have revealed that the dominant symmetry breaking
contribution comes from the mass associated with the spectator quark
system.Assuming that the change in the spectator mass can be treated
perturbatively, we derive a model independent expression for the shift in the
parton distributions of the nucleon. This result is used to derive a relation
between the charge and flavor asymmetric contributions to the valence quark
distributions in the proton, and to calculate CSV contributions to the nucleon
sea. The CSV contribution to the Gottfried sum rule is also estimated, and
found to be small
Time-dependent embedding: surface electron emission
An embedding method for solving the time-dependent Schr\"odinger equation is
developed using the Dirac-Frenkel variational principle. Embedding allows the
time-evolution of the wavefunction to be calculated explicitly in a limited
region of space, the region of physical interest, the embedding potential
ensuring that the wavefunction satisfies the correct boundary conditions for
matching on to the rest of the system. This is applied to a study of the
excitation of electrons at a metal surface, represented by a one-dimensional
model potential for Cu(111). Time-dependent embedding potentials are derived
for replacing the bulk substrate, and the image potential and vacuum region
outside the surface, so that the calculation of electron excitation by a
surface perturbation can be restricted to the surface itself. The excitation of
the Shockley surface state and a continuum bulk state is studied, and the
time-structure of the resulting currents analysed. Non-linear effects and the
time taken for the current to arrive outside the surface are discussed. The
method shows a clear distinction between emission from the localized surface
state, where the charge is steadily depleted, and the extended continuum state
where the current emitted into the vacuum is compensated by current approaching
the surface from the bulk.Comment: 15 figure
Legionella pneumophila macrophage infectivity potentiator protein appendage domains modulate protein dynamics and inhibitor binding
Macrophage infectivity potentiator (MIP) proteins are widespread in human pathogens including Legionella pneumophila, the causative agent of Legionnaires' disease and protozoans such as Trypanosoma cruzi. All MIP proteins contain a FKBP (FK506 binding protein)-like prolyl-cis/trans-isomerase domain that hence presents an attractive drug target. Some MIPs such as the Legionella pneumophila protein (LpMIP) have additional appendage domains of mostly unknown function. In full-length, homodimeric LpMIP, the N-terminal dimerization domain is linked to the FKBP-like domain via a long, free-standing stalk helix. Combining X-ray crystallography, NMR and EPR spectroscopy and SAXS, we elucidated the importance of the stalk helix for protein dynamics and inhibitor binding to the FKBP-like domain and bidirectional crosstalk between the different protein regions. The first comparison of a microbial MIP and a human FKBP in complex with the same synthetic inhibitor was made possible by high-resolution structures of LpMIP with a [4.3.1]-aza-bicyclic sulfonamide and provides a basis for designing pathogen-selective inhibitors. Through stereospecific methylation, the affinity of inhibitors to L. pneumophila and T. cruzi MIP was greatly improved. The resulting X-ray inhibitor-complex structures of LpMIP and TcMIP at 1.49 and 1.34 Ă
, respectively, provide a starting point for developing potent inhibitors against MIPs from multiple pathogenic microorganisms
Microscopic description of Coulomb and nuclear excitation of multiphonon states in Ca + Ca collisions
We calculate the inelastic scattering cross sections to populate one- and
two-phonon states in heavy ion collisions with both Coulomb and nuclear
excitations. Starting from a microscopic approach based on RPA, we go beyond it
in order to treat anharmonicities and non-linear terms in the exciting field.
These anharmonicities and non-linearities are shown to have important effects
on the cross sections both in the low energy part of the spectrum and in the
energy region of the Double Giant Quadrupole Resonance. By properly introducing
an optical potential the inelastic cross section is calculated semiclassically
by integrating the excitation probability over all impact parameters. A
satisfactory agreement with the experimental results is obtained.Comment: 20 pages, 2 figures, revtex, to be published in Phys. Rev.
Charge symmetry violation in the parton distributions of the nucleon
We point out that charge symmetry violation in both the valence and sea quark
distributions of the nucleon has a non-perturbative source. We calculate this
non-perturbative charge symmetry violation using the meson cloud model, which
has earlier been successfully applied to both the study of SU(2) flavour
asymmetry in the nucleon sea and quark-antiquark asymmetry in the nucleon. We
find that the charge symmetry violation in the valence quark distribution is
well below 1%, which is consistent with most low energy tests but significantly
smaller than the quark model prediction about 5%-10%. Our prediction for the
charge symmetry violation in the sea quark distribution is also much smaller
than the quark model calculation.Comment: RevTex, 26 pages, 6 PostScript figure
Mutual heavy ion dissociation in peripheral collisions at ultrarelativistic energies
We study mutual dissociation of heavy nuclei in peripheral collisions at
ultrarelativistic energies. Earlier this process was proposed for beam
luminosity monitoring via simultaneous registration of forward and backward
neutrons in zero degree calorimeters at Relativistic Heavy Ion Collider.
Electromagnetic dissociation of heavy ions is considered in the framework of
the Weizsacker-Williams method and simulated by the RELDIS code. Photoneutron
cross sections measured in different experiments and calculated by the GNASH
code are used as input for the calculations of dissociation cross sections. The
difference in results obtained with different inputs provides a realistic
estimation for the systematic uncertainty of the luminosity monitoring method.
Contribution to simultaneous neutron emission due to grazing nuclear
interactions is calculated within the abrasion model. Good description of CERN
SPS experimental data on Au and Pb dissociation gives confidence in predictive
power of the model for AuAu and PbPb collisions at RHIC and LHC.Comment: 46 pages with 7 tables and 13 figures, numerical integration accuracy
improved, next-to-leading-order corrections include
Cross-sections of spallation residues produced in 1.A GeV 208Pb on proton reactions
Spallation residues produced in 1 GeV per nucleon Pb on proton
reactions have been studied using the FRagment Separator facility at GSI.
Isotopic produc- tion cross-sections of elements from Pm to Pb
have been measured down to 0.1 mb with a high accuracy. The recoil kinetic
energies of the produced fragments were also determined. The obtained
cross-sections agree with most of the few existing gamma-spectroscopy data.
Data are compared with different intra nuclear-cascade and evaporation-fission
models. Drastic deviations were found for a standard code used in technical
applications.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Lett.
Revised version May 12, 200
Shadowing in neutrino deep inelastic scattering and the determination of the strange quark distribution
We discuss shadowing corrections to the structure function in neutrino
deep-inelastic scattering on heavy nuclear targets. In particular, we examine
the role played by shadowing in the comparison of the structure functions
measured in neutrino and muon deep inelastic scattering. The importance of
shadowing corrections in the determination of the strange quark distributions
is explained.Comment: 22 pages, 7 figure
- âŠ