123 research outputs found

    Color Magnetic Corrections to Quark Model Valence Distributions

    Full text link
    We calculate order αs\alpha_s color magnetic corrections to the valence quark distributions of the proton using the Los Alamos Model Potential wavefunctions. The spin-spin interaction breaks the model SU(4) symmetry, providing a natural mechanism for the difference between the up and down distributions. For a value of αs\alpha_s sufficient to produce the N−ΔN-\Delta mass splitting, we find up and down quark distributions in reasonable agreement with experiment.Comment: 25 Pages, LA-UR-93-132

    Charge Symmetry Breaking in the Valence Quark Distributions of the Nucleon

    Full text link
    Using a quark model, we study the effect of charge symmetry breaking on the valence quark distributions of the nucleon. The effect due to quark mass differences and the Coulomb interaction of the electrically charged quarks is calculated and, in contrast to recent claims, found to be small. In addition, we investigate the effect of charge symmetry breaking in the confining interaction, and in the perturbative evolution equations used to relate the quark model distributions to experiment. We find that both these effects are small, and that the strong charge symmetry breaking effect included in the scalar confining interactions may be distinguishable from that generated by quark mass differences.Comment: 10 pages, LaTEX, 5 Postscript figure

    Flavor and Charge Symmetry in the Parton Distributions of the Nucleon

    Get PDF
    Recent calculations of charge symmetry violation(CSV) in the valence quark distributions of the nucleon have revealed that the dominant symmetry breaking contribution comes from the mass associated with the spectator quark system.Assuming that the change in the spectator mass can be treated perturbatively, we derive a model independent expression for the shift in the parton distributions of the nucleon. This result is used to derive a relation between the charge and flavor asymmetric contributions to the valence quark distributions in the proton, and to calculate CSV contributions to the nucleon sea. The CSV contribution to the Gottfried sum rule is also estimated, and found to be small

    Time-dependent embedding: surface electron emission

    Full text link
    An embedding method for solving the time-dependent Schr\"odinger equation is developed using the Dirac-Frenkel variational principle. Embedding allows the time-evolution of the wavefunction to be calculated explicitly in a limited region of space, the region of physical interest, the embedding potential ensuring that the wavefunction satisfies the correct boundary conditions for matching on to the rest of the system. This is applied to a study of the excitation of electrons at a metal surface, represented by a one-dimensional model potential for Cu(111). Time-dependent embedding potentials are derived for replacing the bulk substrate, and the image potential and vacuum region outside the surface, so that the calculation of electron excitation by a surface perturbation can be restricted to the surface itself. The excitation of the Shockley surface state and a continuum bulk state is studied, and the time-structure of the resulting currents analysed. Non-linear effects and the time taken for the current to arrive outside the surface are discussed. The method shows a clear distinction between emission from the localized surface state, where the charge is steadily depleted, and the extended continuum state where the current emitted into the vacuum is compensated by current approaching the surface from the bulk.Comment: 15 figure

    Legionella pneumophila macrophage infectivity potentiator protein appendage domains modulate protein dynamics and inhibitor binding

    Get PDF
    Macrophage infectivity potentiator (MIP) proteins are widespread in human pathogens including Legionella pneumophila, the causative agent of Legionnaires' disease and protozoans such as Trypanosoma cruzi. All MIP proteins contain a FKBP (FK506 binding protein)-like prolyl-cis/trans-isomerase domain that hence presents an attractive drug target. Some MIPs such as the Legionella pneumophila protein (LpMIP) have additional appendage domains of mostly unknown function. In full-length, homodimeric LpMIP, the N-terminal dimerization domain is linked to the FKBP-like domain via a long, free-standing stalk helix. Combining X-ray crystallography, NMR and EPR spectroscopy and SAXS, we elucidated the importance of the stalk helix for protein dynamics and inhibitor binding to the FKBP-like domain and bidirectional crosstalk between the different protein regions. The first comparison of a microbial MIP and a human FKBP in complex with the same synthetic inhibitor was made possible by high-resolution structures of LpMIP with a [4.3.1]-aza-bicyclic sulfonamide and provides a basis for designing pathogen-selective inhibitors. Through stereospecific methylation, the affinity of inhibitors to L. pneumophila and T. cruzi MIP was greatly improved. The resulting X-ray inhibitor-complex structures of LpMIP and TcMIP at 1.49 and 1.34 Å, respectively, provide a starting point for developing potent inhibitors against MIPs from multiple pathogenic microorganisms

    Microscopic description of Coulomb and nuclear excitation of multiphonon states in 40^{40}Ca + 40^{40}Ca collisions

    Get PDF
    We calculate the inelastic scattering cross sections to populate one- and two-phonon states in heavy ion collisions with both Coulomb and nuclear excitations. Starting from a microscopic approach based on RPA, we go beyond it in order to treat anharmonicities and non-linear terms in the exciting field. These anharmonicities and non-linearities are shown to have important effects on the cross sections both in the low energy part of the spectrum and in the energy region of the Double Giant Quadrupole Resonance. By properly introducing an optical potential the inelastic cross section is calculated semiclassically by integrating the excitation probability over all impact parameters. A satisfactory agreement with the experimental results is obtained.Comment: 20 pages, 2 figures, revtex, to be published in Phys. Rev.

    Charge symmetry violation in the parton distributions of the nucleon

    Get PDF
    We point out that charge symmetry violation in both the valence and sea quark distributions of the nucleon has a non-perturbative source. We calculate this non-perturbative charge symmetry violation using the meson cloud model, which has earlier been successfully applied to both the study of SU(2) flavour asymmetry in the nucleon sea and quark-antiquark asymmetry in the nucleon. We find that the charge symmetry violation in the valence quark distribution is well below 1%, which is consistent with most low energy tests but significantly smaller than the quark model prediction about 5%-10%. Our prediction for the charge symmetry violation in the sea quark distribution is also much smaller than the quark model calculation.Comment: RevTex, 26 pages, 6 PostScript figure

    Mutual heavy ion dissociation in peripheral collisions at ultrarelativistic energies

    Get PDF
    We study mutual dissociation of heavy nuclei in peripheral collisions at ultrarelativistic energies. Earlier this process was proposed for beam luminosity monitoring via simultaneous registration of forward and backward neutrons in zero degree calorimeters at Relativistic Heavy Ion Collider. Electromagnetic dissociation of heavy ions is considered in the framework of the Weizsacker-Williams method and simulated by the RELDIS code. Photoneutron cross sections measured in different experiments and calculated by the GNASH code are used as input for the calculations of dissociation cross sections. The difference in results obtained with different inputs provides a realistic estimation for the systematic uncertainty of the luminosity monitoring method. Contribution to simultaneous neutron emission due to grazing nuclear interactions is calculated within the abrasion model. Good description of CERN SPS experimental data on Au and Pb dissociation gives confidence in predictive power of the model for AuAu and PbPb collisions at RHIC and LHC.Comment: 46 pages with 7 tables and 13 figures, numerical integration accuracy improved, next-to-leading-order corrections include

    Cross-sections of spallation residues produced in 1.A GeV 208Pb on proton reactions

    Full text link
    Spallation residues produced in 1 GeV per nucleon 208^{208}Pb on proton reactions have been studied using the FRagment Separator facility at GSI. Isotopic produc- tion cross-sections of elements from 61_{61}Pm to 82_{82}Pb have been measured down to 0.1 mb with a high accuracy. The recoil kinetic energies of the produced fragments were also determined. The obtained cross-sections agree with most of the few existing gamma-spectroscopy data. Data are compared with different intra nuclear-cascade and evaporation-fission models. Drastic deviations were found for a standard code used in technical applications.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. Lett. Revised version May 12, 200

    Shadowing in neutrino deep inelastic scattering and the determination of the strange quark distribution

    Get PDF
    We discuss shadowing corrections to the structure function F2F_2 in neutrino deep-inelastic scattering on heavy nuclear targets. In particular, we examine the role played by shadowing in the comparison of the structure functions F2F_2 measured in neutrino and muon deep inelastic scattering. The importance of shadowing corrections in the determination of the strange quark distributions is explained.Comment: 22 pages, 7 figure
    • 

    corecore