1,173 research outputs found

    Metastable supersymmetry breaking and multitrace deformations of SQCD

    Get PDF
    Metastable vacua in supersymmetric QCD in the presence of single and multitrace deformations of the superpotential are explored, with the aim of obtaining an acceptable phenomenology. The metastable vacua appear at one loop, have a broken R-symmetry, and a magnetic gauge group that is completely Higgsed. With only a single trace deformation, the adjoint fermions from the meson superfield are approximately massless at one loop, even though they are massive at tree level and R-symmetry is broken. Consequently, if charged under the standard model, they are unacceptably light. A multitrace quadratic deformation generates fermion masses proportional to the deformation parameter. Phenomenologically viable models of direct gauge mediation can then be obtained, and some of their features are discussed.Comment: 33 pages, 3 figures. Added references and a commen

    Bounds on Cross-sections and Lifetimes for Dark Matter Annihilation and Decay into Charged Leptons from Gamma-ray Observations of Dwarf Galaxies

    Full text link
    We provide conservative bounds on the dark matter cross-section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle Ï•\phi. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion ~10 to 20 times lower than that of the local Galactic halo, then the cross-sections for dark matter annihilating through Ï•\phi's required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into Ï„\tau's is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross-section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after one year of observation.Comment: 11 pages, 4 figures. References added. Final published versio

    Atomic-scale coexistence of short-range magnetic order and superconductivity in Fe1+y_{1+y}Se0.1_{0.1}Te0.9_{0.9}

    Get PDF
    The ground state of the parent compounds of many high temperature superconductors is an antiferromagnetically (AFM) ordered phase, where superconductivity emerges when the AFM phase transition is suppressed by doping or application of pressure. This behaviour implies a close relation between the two orders. Understanding the interplay between them promises a better understanding of how the superconducting condensate forms from the AFM ordered background. Here we explore this relation in real space at the atomic scale using low temperature spin-polarized scanning tunneling microscopy (SP-STM) and spectroscopy. We investigate the transition from antiferromagnetically ordered Fe1+yTe\mathrm{Fe}_{1+y}\mathrm{Te} via the spin glass phase in Fe1+ySe0.1Te0.9\mathrm{Fe}_{1+y}\mathrm{Se}_{0.1}\mathrm{Te}_{0.9} to superconducting Fe1+ySe0.15Te0.85\mathrm{Fe}_{1+y}\mathrm{Se}_{0.15}\mathrm{Te}_{0.85}. In Fe1+ySe0.1Te0.9\mathrm{Fe}_{1+y}\mathrm{Se}_{0.1}\mathrm{Te}_{0.9} we observe an atomic-scale coexistence of superconductivity and short-ranged bicollinear antiferromagnetic order.Comment: 7 pages, 6 figure

    Searching for super-WIMPs in leptonic heavy meson decays

    Get PDF
    We study constraints on the models of bosonic super-weakly interacting particle (super-WIMP) dark matter (DM) with DM masses mX∼O(1−100)m_X \sim \mathcal{O}(1 - 100) keV from leptonic decays M→ℓνˉℓ+XM\rightarrow \ell \bar{\nu}_\ell + X, where M=B±,D±,Ds±M=B^\pm, D^\pm, D_s^\pm is a heavy meson state. We focus on two cases where XX denotes either a light pseudoscalar (axion-like), or a light vector state that couples to the standard model (SM) through kinetic mixing. We note that for a small DM mass these decays are separately sensitive to DM couplings to quarks, but not its mass.Comment: 17 pages, 3 figures, 6 table

    Abdominaler Schmerz

    Get PDF
    Zusammenfassung: Abdominalschmerzen können Ausdruck einer Vielzahl intra- und extraabdomineller Erkrankungen sein. Angesichts dieses breiten ätiologischen Spektrums gilt es, im Initialstadium der Diagnostik zielgerichtet vorzugehen, um ohne Zeitverzug die Ursache und damit letzlich die Dringlichkeit weitergehender Maßnahmen zu bestimmen. Ziel dieser Evaluation ist eine initiale risikostratifizierte Triagierung des Patienten. Im Gegensatz zu somatischen Ursachen abdominalen Schmerzes ist eine derartige kausale Therapie bei funktionellen Erkrankungen des Gastrointestinaltraktes zum gegenwärtigen Zeitpunkt nur sehr begrenzt möglich, sodass hierbei der Fokus auf eine bedarfs- und symptomadaptierte Behandlung gelegt werden sol
    • …
    corecore