628 research outputs found

    Theory of the Eigler-swith

    Full text link
    We suggest a simple model to describe the reversible field-induced transfer of a single Xe-atom in a scanning tunneling microscope, --- the Eigler-switch. The inelasticly tunneling electrons give rise to fluctuating forces on and damping of the Xe-atom resulting in an effective current dependent temperature. The rate of transfer is controlled by the well-known Arrhenius law with this effective temperature. The directionality of atom transfer is discussed, and the importance of use of non-equlibrium-formalism for the electronic environment is emphasized. The theory constitutes a formal derivation and generalization of the so-called Desorption Induced by Multiple Electron Transitions (DIMET) point of view.Comment: 13 pages (including 2 figures in separate LaTeX-files with ps-\specials), REVTEX 3.

    EffectiveSan: Type and Memory Error Detection using Dynamically Typed C/C++

    Full text link
    Low-level programming languages with weak/static type systems, such as C and C++, are vulnerable to errors relating to the misuse of memory at runtime, such as (sub-)object bounds overflows, (re)use-after-free, and type confusion. Such errors account for many security and other undefined behavior bugs for programs written in these languages. In this paper, we introduce the notion of dynamically typed C/C++, which aims to detect such errors by dynamically checking the "effective type" of each object before use at runtime. We also present an implementation of dynamically typed C/C++ in the form of the Effective Type Sanitizer (EffectiveSan). EffectiveSan enforces type and memory safety using a combination of low-fat pointers, type meta data and type/bounds check instrumentation. We evaluate EffectiveSan against the SPEC2006 benchmark suite and the Firefox web browser, and detect several new type and memory errors. We also show that EffectiveSan achieves high compatibility and reasonable overheads for the given error coverage. Finally, we highlight that EffectiveSan is one of only a few tools that can detect sub-object bounds errors, and uses a novel approach (dynamic type checking) to do so.Comment: To appear in the Proceedings of 39th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI2018

    Surface Screening Charge and Effective Charge

    Full text link
    The charge on an atom at a metallic surface in an electric field is defined as the field-derivative of the force on the atom, and this is consistent with definitions of effective charge and screening charge. This charge can be found from the shift in the potential outside the surface when the atoms are moved. This is used to study forces and screening on surface atoms of Ag(001) c(2×2)(2\times 2) -- Xe as a function of external field. It is found that at low positive (outward) fields, the Xe with a negative effective charge of -0.093 e|{e}| is pushed into the surface. At a field of 2.3 V \AA1^{-1} the charge changes sign, and for fields greater than 4.1 V \AA1^{-1} the Xe experiences an outward force. Field desorption and the Eigler switch are discussed in terms of these results.Comment: 4 pages, 1 figure, RevTex (accepted by PRL

    Polymerization in carbone : a novel method for the synthesis of more sustainable electrodes and their application as cathodes for lithium–organic energy storage materials based on vanillin

    No full text
    Sustainable energy storage materials are needed to implement necessary transitions to a more sustainable society. Therefore, we present novel vanillin (and thus ultimately possibly lignin)-derived electrode materials for lithium-ion-based energy storage systems. In the present approach, vanillin is first modified in two sustainable steps to afford bisvanillonitrile (BVN). The precursor materials for the electrodes are made from BVN and carbon black and are subsequently treated in the atmosphere of triflic acid in order to polymerize BVN. Used as a cathode material in a lithium-ion-based energy storage device, the resulting material shows capacities up to 90 mAh g–1 (respective to the whole electrode mass). This extraordinary performance can be attributed to a combination of non-Faradaic and Faradaic charge storage involving quinone units, which are abundantly found in the polymer backbone. In contrast to conventional organic electrode materials, excellent contact to carbon as a conductive additive is established by performing the polymerization in a mixture with carbon (in carbone), allowing the omission of additional unsustainable binder materials. Due to the sustainable synthesis and good performance, such sustainable electrodes may be applied in future energy storage devices

    Atomic Scale Memory at a Silicon Surface

    Get PDF
    The limits of pushing storage density to the atomic scale are explored with a memory that stores a bit by the presence or absence of one silicon atom. These atoms are positioned at lattice sites along self-assembled tracks with a pitch of 5 atom rows. The writing process involves removal of Si atoms with the tip of a scanning tunneling microscope. The memory can be reformatted by controlled deposition of silicon. The constraints on speed and reliability are compared with data storage in magnetic hard disks and DNA.Comment: 13 pages, 5 figures, accepted by Nanotechnolog

    First principles theory of inelastic currents in a scanning tunneling microscope

    Get PDF
    A first principles theory of inelastic tunneling between a model probe tip and an atom adsorbed on a surface is presented, extending the elastic tunneling theory of Tersoff and Hamann. The inelastic current is proportional to the change in the local density of states at the center of the tip due to the addition of the adsorbate. We use the theory to investigate the vibrational heating of an adsorbate below an STM tip. We calculate the desorption rate of H from Si(100)-H(2×\times1) as function of the sample bias and tunnel current, and find excellent agreement with recent experimental data.Comment: 5 pages, RevTeX, epsf file

    Atomic Tunneling from a STM/AFM tip: Dissipative Quantum Effects from Phonons

    Full text link
    We study the effects of phonons on the tunneling of an atom between two surfaces. In contrast to an atom tunneling in the bulk, the phonons couple very strongly, and qualitatively change the tunneling behavior. This is the first example of {\it ohmic} coupling from phonons for a two-state system. We propose an experiment in which an atom tunnels from the tip of an STM, and show how its behavior would be similar to the Macroscopic Quantum Coherence behavior predicted for SQUIDS. The ability to tune and calculate many parameters would lead to detailed tests of the standard theories. (For a general intro to this work on the on the World-Wide-Web: http://www.lassp.cornell.edu. Click on ``Entertaining Science Done Here'' and ``Quantum Tunneling of Atoms'')Comment: 12 pages, ReVTex3.0, two figures (postscript). This is a (substantially) revised version of cond-mat/9406043. More info (+ postscript text) at : http://www.lassp.cornell.edu/ardlouis/publications.htm

    Scattering Theory of Kondo Mirages and Observation of Single Kondo Atom Phase Shift

    Full text link
    We explain the origin of the Kondo mirage seen in recent quantum corral Scanning Tunneling Microscope (STM) experiments with a scattering theory of electrons on the surfaces of metals. Our theory combined with experimental data provides the first direct observation of a single Kondo atom phase shift. The Kondo mirage at the empty focus of an elliptical quantum corral is shown to arise from multiple electron bounces off the walls of the corral in a manner analagous to the formation of a real image in optics. We demonstrate our theory with direct quantitive comparision to experimental data.Comment: 13 pages; significant clarifications of metho

    Resolution of intramolecular dipoles and push-back effect of individual molecules on a metal surface

    Full text link
    Molecules consisting of a donor and an acceptor moiety can exhibit large intrinsic dipole moments. Upon deposition on a metal surface, the dipole may be effectively screened and the charge distribution altered due to hybridization with substrate electronic states. Here, we deposit Ethyl-Diaminodicyanoquinone molecules, which exhibit a large dipole moment in gas phase, on a Au(111) surface. Employing a combination of scanning tunneling microscopy and non-contact atomic force microscopy, we find that a significant dipole moment persists in the flat-lying molecules. Density-functional theory calculations reveal that the dipole moment is even increased on the metal substrate as compared to the gas phase. We also show that the local contact potential across the molecular islands is decreased by several tens of meV with respect to the bare metal. We explain this by the induced charge-density redistribution due to the adsorbed molecules, which confine the substrate's wavefunction at the interface. Our local measurements provide direct evidence of this so-called push-back or cushion effect at the scale of individual molecules.Comment: This document is the unedited Author's version of a Submitted Work that was subsequently accepted for publication in Journal of Physical Chemistry

    Microscopic theory for quantum mirages in quantum corrals

    Get PDF
    Scanning tunneling microscopy permits to image the Kondo resonance of a single magnetic atom adsorbed on a metallic surface. When the magnetic impurity is placed at the focus of an elliptical quantum corral, a Kondo resonance has been recently observed both on top of the impurity and on top of the focus where no magnetic impurity is present. This projection of the Kondo resonance to a remote point on the surface is referred to as quantum mirage. We present a quantum mechanical theory for the quantum mirage inside an ideal quantum corral and predict that the mirage will occur in corrals with shapes other than elliptical
    corecore