4,555 research outputs found

    Gravity survey of the Mt. Toondina impact structure, South Australia

    Get PDF
    The Mt. Toondina impact structure is located in northern South Australia, about 45 km south of the town of Oodnadatta. Only the central uplift is exposed. The outcrops at Mt. Toondina reveal a remarkable structural anomaly surrounded by a broad expanse of nearly flat-lying beds of the Bulldog Shale of Early Cretaceous age. A gravity survey was undertaken in 1989 to determine the diameter of the impact structure, define the form of the central uplift, and understand the local crustal structure. Data were collected along two orthogonal lines across the structure. In addition to the profiles, a significant number of measurements were made on and around the central uplift. The 1989 gravity data combined with 1963 gravity data and the seismic reflection data provide an excellent data base to interpret the subsurface structure of the Mt. Toondina feature

    Spray Ejected from the Lunar Surface by Meteoroid Impact

    Get PDF
    Fragments ejected from lunar surface by meteoroid impact analyzed on basis of studies of hypervelocity impact in rock and san

    Research core drilling in the Manson impact structure, Iowa

    Get PDF
    The Manson impact structure (MIS) has a diameter of 35 km and is the largest confirmed impact structure in the United States. The MIS has yielded a Ar-40/Ar-39 age of 65.7 Ma on microcline from its central peak, an age that is indistinguishable from the age of the Cretaceous-Tertiary boundary. In the summer of 1991 the Iowa Geological Survey Bureau and U.S. Geological Survey initiated a research core drilling project on the MIS. The first core was beneath 55 m of glacial drift. The core penetrated a 6-m layered sequence of shale and siltstone and 42 m of Cretaceous shale-dominated sedimentary clast breccia. Below this breccia, the core encountered two crystalline rock clast breccia units. The upper unit is 53 m thick, with a glassy matrix displaying various degrees of devitrification. The upper half of this unit is dominated by the glassy matrix, with shock-deformed mineral grains (especially quartz) the most common clast. The glassy-matrix unit grades downward into the basal unit in the core, a crystalline rock breccia with a sandy matrix, the matrix dominated by igneous and metamorphic rock fragments or disaggregated grains from those rocks. The unit is about 45 m thick, and grains display abundant shock deformation features. Preliminary interpretations suggest that the crystalline rock breccias are the transient crater floor, lifted up with the central peak. The sedimentary clast breccia probably represents a postimpact debris flow from the crater rim, and the uppermost layered unit probably represents a large block associated with the flow. The second core (M-2) was drilled near the center of the crater moat in an area where an early crater model suggested the presence of postimpact lake sediments. The core encountered 39 m of sedimentary clast breccia, similar to that in the M-1 core. Beneath the breccia, 120 m of poorly consolidated, mildly deformed, and sheared siltstone, shale, and sandstone was encountered. The basal unit in the core was another sequence of sedimentary clast breccia. The two sedimentary clast units, like the lithologically similar unit in the M-1 core, probably formed as debris flows from the crater rim. The middle, nonbrecciated interval is probably a large, intact block of Upper Cretaceous strata transported from the crater rim with the debris flow. Alternatively, the sequence may represent the elusive postimpact lake sequence

    Chemical fractionation of siderophile elements in impactites from Australian meteorite craters

    Get PDF
    The abundance pattern of siderophile elements in terrestrial and lunar impact melt rocks was used extensively to infer the nature of the impacting projectiles. An implicit assumption made is that the siderophile abundance ratios of the projectiles are approximately preserved during mixing of the projectile constituents with the impact melts. As this mixture occurs during flow of strongly shocked materials at high temperatures, however there are grounds for suspecting that the underlying assumption is not always valid. In particular, fractionation of the melted and partly vaporized material of the projectile might be expected because of differences in volatility, solubility in silicate melts, and other characteristics of the constituent elements. Impactites from craters with associated meteorites offer special opportunities to test the assumptions on which projectile identifications are based and to study chemical fractionation that occurred during the impact process

    Total scattering descriptions of local and cooperative distortions in the oxide spinel (Mg,Cu)Cr2O4 with dilute Jahn-Teller ions

    Full text link
    The normal spinel oxide MgCr2O4 is cubic at room temperature while the normal spinel CuCr2O4 is tetragonal as a consequence of the Jahn-Teller nature of Cu2+ on the tetrahedral sites. Despite different end-member structures, complete solid solutions of Mg_{1-x}Cu_xCr2O4 can be prepared that display a first-order structural transition with composition x = 0.43 at room temperature. Reverse Monte Carlo analysis of total neutron scattering on data acquired between 300 K and 15 K on samples with x = 0.10, 0.20, and 0.43 provides unbiased local and average structure descriptions of the samples, including an understanding of the transition from local Jahn-Teller distortions in the cubic phase to cooperative distortions that result in a tetragonal structure. Distributions of continuous symmetry measures help to understand and distinguish distorted and undistorted coordination around the tetrahedral site in the solid solutions. Magnetic exchange bias is observed in field-cooled hysteresis loops of samples with dilute Cu2+ concentration and in samples with tetragonal--cubic phase coexistence around 300 K.Comment: 10 pages, 14 figure

    Telling Your Story: Using Metrics to Display Your Value (H2)

    Full text link
    The American Bar Association, academic institutions, law firms, and governments are demanding more and more outcome-based performance. However, displaying these outcomes is difficult for law libraries. Law libraries possess an abundance of data, but determining which metrics will showcase your law library’s value and performance is difficult. Speakers from a law school, law firm, and court library will explain the different metrics they use to display their value to their stakeholders. After these short presentations, a “fishbowl” discussion will provide participants the chance to share and learn about different metrics and tools law libraries are using to best tell their story

    Interatomic distances and atomic valences in NaZn_(13)

    Get PDF
    The crystal structure of NaZn_(13) and of several homologous compounds AB_(13) was reported by Ketelaar and by Zintl & Hauke to be based on space group O_h^6-Fm3c, with 8 :Na in 8(a): ¼, ¼:, ¼; ... ; 8 Zn_I in 8(b): 0, 0, 0; .... ; and 96 Zn_(II) in 96(i): 0, y, z; ... . Approximate values were reported for the parameters a_0, y, and z; for NaZn_(13) Zintl & Hauke reported 12.27 Å, 0.178, and 0.122 for these three parameters. Each Zn_I is surrounded by twelve Zn_(II) at the vertices of a nearly regular icosahedron, and each Na by twenty-four Zn_(II) at the vertices of a snub cube. Our interest in the structure was largely concerned with the valences of the two different kinds of Zn atoms, it being presumptive that Zn_I has a larger valence than Zn_(II) because its icosahedral coordination requires it to be smaller than Zn_(II). Lines on new powder photographs of NaZn_(13) were measured and the intensities were estimated visually with as much precision as possible. Least-squares treatments were employed in order to obtain the best possible values for the three parameters; the values obtained are a_0 = 12.2836 ± 0.0003Å, y = 0.1806 ± 0.0003, and z = 0.1192 ± 0.0003. The uncertainties given are calculated standard deviations. Analysis of the interatomic distances yields a selfconsistent interpretation in which Zn_I is assumed to be quinquevalent and Zn_(II) quadrivalent, while Na may have a valence of unity or one as high as 1¼, the excess over unity being suggested by the interatomic distances and being, if real, presumably a consequence of electron transfer. A valence electron number of approximately 432 per unit cell is obtained, which is in good agreement with the value 428.48 predicted on the basis of a filled Brillouin polyhedron defined by the forms {444}, {640}, and {800}

    The age of Wolfe Creek meteorite crater (Kandimalal), Western Australia

    Get PDF
    Wolfe Creek crater lies in northwestern Australia at the edge of the Great Sandy Desert. Together with Meteor Crater, it is one of the two largest craters on Earth from which meteorite fragments have been recovered. The age of the impact is poorly constrained and unpublished data places the event at about 300,000 years ago. In comparison, Meteor Crater is well constrained by exposure dating. In this paper, we present new ages for Wolfe Creek Crater from exposure dating using the cosmogenic nuclides 10Be and 26Al, together with optically stimulated luminescence ages (OSL) on sand from a site created by the impact. We also present a new topographic survey of the crater using photogrammetry. The exposure ages range from ~86 to 128 ka. The OSL ages indicate that the age of the impact is most likely to be ~120 ka with a maximum age of 137 ka. Considering the geomorphic setting, the most likely age of the crater is 120 ± 9 ka. Last, we review the age of Meteor Crater in Arizona. Changes in production rates and scaling factors since the original dating work revise the impact age to 61.1 ± 4.8 ka, or ~20% older than previously reported

    Transplant Thought-Experiments: Two costly mistakes in discounting them

    Get PDF
    ‘Transplant’ thought-experiments, in which the cerebrum is moved from one body to another, have featured in a number of recent discussions in the personal identity literature. Once taken as offering confirmation of some form of psychological continuity theory of identity, arguments from Marya Schechtman and Kathleen Wilkes have contended that this is not the case. Any such apparent support is due to a lack of detail in their description or a reliance on predictions that we are in no position to make. I argue that the case against them rests on two serious misunderstandings of the operation of thought-experiments, and that even if they do not ultimately support a psychological continuity theory, they do major damage to that theory’s opponents
    corecore