258 research outputs found
MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice
Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases
Clinical predictors of elective total joint replacement in persons with end-stage knee osteoarthritis
Abstract Background Arthritis is a leading cause of disability in the United States. Total knee arthroplasty (TKA) has become the gold standard to manage the pain and disability associated with knee osteoarthritis (OA). Although more than 400 000 primary TKA surgeries are performed each year in the United States, not all individuals with knee OA elect to undergo the procedure. No clear consensus exists on criteria to determine who should undergo TKA. The purpose of this study was to determine which clinical factors will predict the decision to undergo TKA in individuals with end-stage knee OA. Knowledge of these factors will aid in clinical decision making for the timing of TKA. Methods Functional data from one hundred twenty persons with end-stage knee OA were obtained through a database. All of the individuals complained of knee pain during daily activities and had radiographic evidence of OA. Functional and clinical tests, collectively referred to as the Delaware Osteoarthritis Profile, were completed by a physical therapist. This profile consisted of measuring height, weight, quadriceps strength and active knee range of motion, while functional mobility was assessed using the Timed Up and Go (TUG) test and the Stair Climbing Task (SCT). Self-perceived functional ability was measured using the activities of daily living subscale of the Knee Outcome Survey (KOS-ADLS). A logistic regression model was used to identify variables predictive of TKA use. Results Forty subjects (33%) underwent TKA within two years of evaluation. These subjects were significantly older and had significantly slower TUG and SCT times (p 2 = 0.403). Conclusions Younger patients with full knee ROM who have a higher self-perception of function are less likely to undergo TKA. Physicians and clinicians should be aware that potentially modifiable factors, such as knee ROM can be addressed to potentially postpone the need for TKA.</p
Histone Deacetylase Complexes Promote Trinucleotide Repeat Expansions
Genetic analysis in budding yeast and in cultured human astrocytes reveals that specific histone deacetylase complexes accelerate expansion mutations in DNA triplet repeats
Effect of cross exercise on quadriceps acceleration reaction time and subjective scores (Lysholm questionnaire) following anterior cruciate ligament reconstruction
Abstract Background Anterior cruciate ligament (ACL) injury or reconstruction can cause knee impairments and disability. Knee impairments are related to quadriceps performance – accelerated reaction time (ART) – and disability to performance of daily living activities which is assessed by questionnaires such as the Lysholm knee score. The purposes of this study were to investigate the effect of cross exercise, as supplementary rehabilitation to the early phase of ACL reconstruction: a) on quadriceps ART at the angles 45°, 60° and 90° of knee flexion and, b) on the subjective scores of disability in ACL reconstructed patients. Methods 42 patients who underwent ACL reconstruction were randomly divided into 3 groups, two experimental and one control. All groups followed the same rehabilitation program. The experimental groups followed 8 weeks of cross eccentric exercise (CEE) on the uninjured knee; 3 d/w, and 5 d/w respectively. Quadriceps ART was measured at 45°, 60° and 90° of knee flexion pre and nine weeks post-operatively using an isokinetic dynamometer. Patients also completed pre and post operatively the Lysholm questionnaire whereby subjective scores were recorded. Results Two factor ANOVA showed significant differences in ART at 90° among the groups (F = 4.29, p = 0.02, p Significant differences were also found in the Lysholm score among the groups (F = 4.75, p = 0.01, p Conclusion CEE showed improvements on quadriceps ART at 90° at a sequence of 3 d/w and in the Lysholm score at a sequence of 3 d/w and 5 d/w respectively on ACL reconstructed patients.</p
Revision 1 Size and position of the healthy meniscus, and its Correlation with sex, height, weight, and bone area- a cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Meniscus extrusion or hypertrophy may occur in knee osteoarthritis (OA). However, currently no data are available on the position and size of the meniscus in asymptomatic men and women with normal meniscus integrity.</p> <p>Methods</p> <p>Three-dimensional coronal DESSwe MRIs were used to segment and quantitatively measure the size and position of the medial and lateral menisci, and their correlation with sex, height, weight, and tibial plateau area. 102 knees (40 male and 62 female) were drawn from the Osteoarthritis Initiative "non-exposed" reference cohort, including subjects without symptoms, radiographic signs, or risk factors for knee OA. Knees with MRI signs of meniscus lesions were excluded.</p> <p>Results</p> <p>The tibial plateau area was significantly larger (p < 0.001) in male knees than in female ones (+23% medially; +28% laterally), as was total meniscus surface area (p < 0.001, +20% medially; +26% laterally). Ipsi-compartimental tibial plateau area was more strongly correlated with total meniscus surface area in men (r = .72 medially; r = .62 laterally) and women (r = .67; r = .75) than contra-compartimental or total tibial plateau area, body height or weight. The ratio of meniscus versus tibial plateau area was similar between men and women (p = 0.22 medially; p = 0.72 laterally). Tibial coverage by the meniscus was similar between men and women (50% medially; 58% laterally), but "physiological" medial meniscal extrusion was greater in women (1.83 ± 1.06mm) than in men (1.24mm ± 1.18mm; p = 0.011).</p> <p>Conclusions</p> <p>These data suggest that meniscus surface area strongly scales with (ipsilateral) tibial plateau area across both sexes, and that tibial coverage by the meniscus is similar between men and women.</p
Management of anterior cruciate ligament rupture in patients aged 40 years and older
The aim of anterior cruciate ligament (ACL) reconstruction is essentially to restore functional stability of the knee and to allow patients to return to their desired work and activities. While in the young and active population, surgery is often the best therapeutic option after an ACL tear, ACL reconstruction in middle-aged people is rather more controversial due to concerns about a higher complication rate. The purpose of our article is to establish, through a systematic review of the literature, useful decision-making criteria for the management of anterior cruciate ligament rupture in patients aged 40 years and older, guiding surgeons to the most appropriate therapeutic approach. Various reports have shown excellent results of ACL reconstruction in patients over the age of 40 in terms of subjective satisfaction, return to previous activity level, and reduced complication and failure rates. Some even document excellent outcomes in subjects of 50 years and older. Although there are limited high-level studies, data reported in the literature suggest that ACL reconstruction can be successful in appropriately selected, motivated older patients with symptomatic knee instability who want to return to participating in highly demanding sport and recreational activities. Deciding factors are based on occupation, sex, activity level of the subject, amount of time spent performing such highly demanding activities, and presence of associated knee lesions. Physiological age and activity level are more important than chronological age as deciding factors when considering ACL reconstruction
Stoichiometry of Base Excision Repair Proteins Correlates with Increased Somatic CAG Instability in Striatum over Cerebellum in Huntington's Disease Transgenic Mice
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by expansion of an unstable CAG repeat in the coding sequence of the Huntingtin (HTT) gene. Instability affects both germline and somatic cells. Somatic instability increases with age and is tissue-specific. In particular, the CAG repeat sequence in the striatum, the brain region that preferentially degenerates in HD, is highly unstable, whereas it is rather stable in the disease-spared cerebellum. The mechanisms underlying the age-dependence and tissue-specificity of somatic CAG instability remain obscure. Recent studies have suggested that DNA oxidation and OGG1, a glycosylase involved in the repair of 8-oxoguanine lesions, contribute to this process. We show that in HD mice oxidative DNA damage abnormally accumulates at CAG repeats in a length-dependent, but age- and tissue-independent manner, indicating that oxidative DNA damage alone is not sufficient to trigger somatic instability. Protein levels and activities of major base excision repair (BER) enzymes were compared between striatum and cerebellum of HD mice. Strikingly, 5′-flap endonuclease activity was much lower in the striatum than in the cerebellum of HD mice. Accordingly, Flap Endonuclease-1 (FEN1), the main enzyme responsible for 5′-flap endonuclease activity, and the BER cofactor HMGB1, both of which participate in long-patch BER (LP–BER), were also significantly lower in the striatum compared to the cerebellum. Finally, chromatin immunoprecipitation experiments revealed that POLβ was specifically enriched at CAG expansions in the striatum, but not in the cerebellum of HD mice. These in vivo data fit a model in which POLβ strand displacement activity during LP–BER promotes the formation of stable 5′-flap structures at CAG repeats representing pre-expanded intermediate structures, which are not efficiently removed when FEN1 activity is constitutively low. We propose that the stoichiometry of BER enzymes is one critical factor underlying the tissue selectivity of somatic CAG expansion
A novel approach to investigate tissue-specific trinucleotide repeat instability
Abstract Background In Huntington's disease (HD), an expanded CAG repeat produces characteristic striatal neurodegeneration. Interestingly, the HD CAG repeat, whose length determines age at onset, undergoes tissue-specific somatic instability, predominant in the striatum, suggesting that tissue-specific CAG length changes could modify the disease process. Therefore, understanding the mechanisms underlying the tissue specificity of somatic instability may provide novel routes to therapies. However progress in this area has been hampered by the lack of sensitive high-throughput instability quantification methods and global approaches to identify the underlying factors. Results Here we describe a novel approach to gain insight into the factors responsible for the tissue specificity of somatic instability. Using accurate genetic knock-in mouse models of HD, we developed a reliable, high-throughput method to quantify tissue HD CAG repeat instability and integrated this with genome-wide bioinformatic approaches. Using tissue instability quantified in 16 tissues as a phenotype and tissue microarray gene expression as a predictor, we built a mathematical model and identified a gene expression signature that accurately predicted tissue instability. Using the predictive ability of this signature we found that somatic instability was not a consequence of pathogenesis. In support of this, genetic crosses with models of accelerated neuropathology failed to induce somatic instability. In addition, we searched for genes and pathways that correlated with tissue instability. We found that expression levels of DNA repair genes did not explain the tissue specificity of somatic instability. Instead, our data implicate other pathways, particularly cell cycle, metabolism and neurotransmitter pathways, acting in combination to generate tissue-specific patterns of instability. Conclusion Our study clearly demonstrates that multiple tissue factors reflect the level of somatic instability in different tissues. In addition, our quantitative, genome-wide approach is readily applicable to high-throughput assays and opens the door to widespread applications with the potential to accelerate the discovery of drugs that alter tissue instability
Biomechanics and anterior cruciate ligament reconstruction
For years, bioengineers and orthopaedic surgeons have applied the principles of mechanics to gain valuable information about the complex function of the anterior cruciate ligament (ACL). The results of these investigations have provided scientific data for surgeons to improve methods of ACL reconstruction and postoperative rehabilitation. This review paper will present specific examples of how the field of biomechanics has impacted the evolution of ACL research. The anatomy and biomechanics of the ACL as well as the discovery of new tools in ACL-related biomechanical study are first introduced. Some important factors affecting the surgical outcome of ACL reconstruction, including graft selection, tunnel placement, initial graft tension, graft fixation, graft tunnel motion and healing, are then discussed. The scientific basis for the new surgical procedure, i.e., anatomic double bundle ACL reconstruction, designed to regain rotatory stability of the knee, is presented. To conclude, the future role of biomechanics in gaining valuable in-vivo data that can further advance the understanding of the ACL and ACL graft function in order to improve the patient outcome following ACL reconstruction is suggested
- …