13,023 research outputs found

    Spin and occupation number entanglement of Dirac fields for non-inertial observers

    Get PDF
    We investigate the Unruh effect on entanglement taking into account the spin degree of freedom of the Dirac field. We analyze spin Bell states in this setting, obtaining their entanglement dependance on the acceleration of one of the partners. Then, we consider simple analogs to the occupation number entangled state |00>+|11>, but with spin quantum numbers for |11> showing that, despite their apparent similitude, while the spinless case is always qubit x qubit, for the spin case acceleration produces a qubit x qu4it state. We also introduce a procedure to consistently erase the spin information from our setting preserving occupation numbers. We show how the maximally entangled state for occupation number emerges from our setting, we also analyze its entanglement dependance on acceleration, obtaining a greater entanglement degradation than in the spinless case.Comment: RevTex, 11 pages, 3 figures. The replacement is due to some minor misprints correction

    Wave-like Solutions for Bianchi type-I cosmologies in 5D

    Full text link
    We derive exact solutions to the vacuum Einstein field equations in 5D, under the assumption that (i) the line element in 5D possesses self-similar symmetry, in the classical understanding of Sedov, Taub and Zeldovich, and that (ii) the metric tensor is diagonal and independent of the coordinates for ordinary 3D space. These assumptions lead to three different types of self-similarity in 5D: homothetic, conformal and "wave-like". In this work we present the most general wave-like solutions to the 5D field equations. Using the standard technique based on Campbell's theorem, they generate a large number of anisotropic cosmological models of Bianchi type-I, which can be applied to our universe after the big-bang, when anisotropies could have played an important role. We present a complete review of all possible cases of self-similar anisotropic cosmologies in 5D. Our analysis extends a number of previous studies on wave-like solutions in 5D with spatial spherical symmetry

    Real-time pair-feeding of animals

    Get PDF
    Automatic pair-feeding system was developed which immediately dispenses same amount of food to control animal as has been consumed by experimental animal that has free access to food. System consists of: master feeding system; slave feeding station; and control mechanism. Technique performs real time pair-feeding without attendant time lag

    Optical conductivity and Raman scattering of iron superconductors

    Get PDF
    We discuss how to analyze the optical conductivity and Raman spectra of multi-orbital systems using the velocity and the Raman vertices in a similar way Raman vertices were used to disentangle nodal and antinodal regions in cuprates. We apply this method to iron superconductors in the magnetic and non-magnetic states, studied at the mean field level. We find that the anisotropy in the optical conductivity at low frequencies reflects the difference between the magnetic gaps at the X and Y electron pockets. Both gaps are sampled by Raman spectroscopy. We also show that the Drude weight anisotropy in the magnetic state is sensitive to small changes in the lattice structure.Comment: 14 pages, 10 figures, as accepted in Phys. Rev. B, explanations/discussion added in Secs. II, III and V

    SL(2,R)-geometric phase space and (2+2)-dimensions

    Full text link
    We propose an alternative geometric mathematical structure for arbitrary phase space. The main guide in our approach is the hidden SL(2,R)-symmetry which acts on the phase space changing coordinates by momenta and vice versa. We show that the SL(2,R)-symmetry is implicit in any symplectic structure. We also prove that in any sensible physical theory based on the SL(2,R)-symmetry the signature of the flat target "spacetime" must be associated with either one-time and one-space or at least two-time and two-space coordinates. We discuss the consequences as well as possible applications of our approach on different physical scenarios.Comment: 17 pages, no figure

    Automatic real-time pair-feeding system for animals

    Get PDF
    A pair feeding method and apparatus are provided for experimental animals wherein the amount of food consumed is immediately delivered to a normal or control animal so that there is a qualitative, quantitative and chronological correctness in the pair feeding of the two animals. This feeding mechanism delivers precisely measured amounts of food to a feeder. Circuitry is provided between master and slave feeders so that there is virtually no chance of a malfunction of the feeding apparatus, causing erratic results. Recording equipment is also provided so that an hourly record is kept of food delivery
    corecore