5,979 research outputs found
Measurement of statistical evidence on an absolute scale following thermodynamic principles
Statistical analysis is used throughout biomedical research and elsewhere to
assess strength of evidence. We have previously argued that typical outcome
statistics (including p-values and maximum likelihood ratios) have poor
measure-theoretic properties: they can erroneously indicate decreasing evidence
as data supporting an hypothesis accumulate; and they are not amenable to
calibration, necessary for meaningful comparison of evidence across different
study designs, data types, and levels of analysis. We have also previously
proposed that thermodynamic theory, which allowed for the first time derivation
of an absolute measurement scale for temperature (T), could be used to derive
an absolute scale for evidence (E). Here we present a novel
thermodynamically-based framework in which measurement of E on an absolute
scale, for which "one degree" always means the same thing, becomes possible for
the first time. The new framework invites us to think about statistical
analyses in terms of the flow of (evidential) information, placing this work in
the context of a growing literature on connections among physics, information
theory, and statistics.Comment: Final version of manuscript as published in Theory in Biosciences
(2013
Analysis of the potential impact of the current WTO agricultural negotiations on government strategies in the SADC region
This study aims to help identify how the Agreement on Agriculture (AoA) could potentially constrain government action to achieve food security in the Southern African Development Community (SADC). The paper considers the proposed tariff and subsidy reduction modalities of the current round of WTO negotiations. The main focus is on the potential direct effects of the AoA, in terms of proposed reductions to domestic subsidies and tariffs, on food security policy in SADC countries. The study examines the argument that subsidy reductions and further liberalizing market access may pose constraints on the food security policy options of governments within the region. – SADC ; trade ; WTO ; Agreement on Agriculture ; subsidies ; market acces
Expanded Very Large Arrays Observations of a Proto-Cluster of Molecular Gas-Rich Galaxies at z = 4.05
We present observations of the molecular gas in the GN20 proto-cluster of galaxies at z = 4.05 using the Expanded Very Large Array (EVLA). This group of galaxies is the ideal laboratory for studying the formation of massive galaxies via luminous, gas-rich starbursts within 1.6 Gyr of the big bang. We detect three galaxies in the proto-cluster in CO 2-1 emission, with gas masses (H_2) between 10^(10) and 10^(11) × (α/0.8) M_⊙. The emission from the brightest source, GN20, is resolved with a size ~2'' and has a clear north-south velocity gradient, possibly indicating ordered rotation. The gas mass in GN20 is comparable to the stellar mass (1.3 × 10^(11) × (α/0.8) M_⊙ and 2.3 × 10^(11) M_⊙, respectively), and the sum of gas plus stellar mass is comparable to the dynamical mass of the system (~3.4 × 10^(11)[sin (i)/sin (45°)]^(–2) M_⊙), within a 5 kpc radius. There is also evidence for a tidal tail extending another 2'' north of the galaxy with a narrow velocity dispersion. GN20 may be a massive, gas-rich disk that is gravitationally disturbed, but not completely disrupted. There is one Lyman-break galaxy (BD29079) in the GN20 proto-cluster with an optical spectroscopic redshift within our search volume, and we set a 3σ limit to the molecular gas mass of this galaxy of 1.1 × 10^(10) × (α/0.8) M_⊙
Critical research and advanced technology (CRT) support project
A critical technology base for utility and industrial gas turbines by planning the use of coal-derived fuels was studied. Development tasks were included in the following areas: (1) Combustion - investigate the combustion of coal-derived fuels and methods to minimize the conversion of fuel-bound nitrogen to NOx; (2) materials - understand and minimize hot corrosion; (3) system studies - integrate and focus the technological efforts. A literature survey of coal-derived fuels was completed and a NOx emissions model was developed. Flametube tests of a two-stage (rich-lean) combustor defined optimum equivalence ratios for minimizing NOx emissions. Sector combustor tests demonstrated variable air control to optimize equivalence ratios over a wide load range and steam cooling of the primary zone liner. The catalytic combustion of coal-derived fuels was demonstrated. The combustion of coal-derived gases is very promising. A hot-corrosion life prediction model was formulated and verified with laboratory testing of doped fuels. Fuel additives to control sulfur corrosion were studied. The intermittent application of barium proved effective. Advanced thermal barrier coatings were developed and tested. Coating failure modes were identified and new material formulations and fabrication parameters were specified. System studies in support of the thermal barrier coating development were accomplished
Recommended from our members
Solar irradiance at the earth's surface: long-term behavior observed at the South Pole
This research examines a 17-year database of UV-A (320–400 nm) and visible (400–600 nm) solar irradiance obtained by a scanning spectroradiometer located at the South Pole. The goal is to define the variability in solar irradiance reaching the polar surface, with emphasis on the influence of cloudiness and on identifying systematic trends and possible links to the solar cycle. To eliminate changes associated with the varying solar elevation, the analysis focuses on data averaged over 30–35 day periods centered on each year's austral summer solstice. The long-term average effect of South Polar clouds is a small attenuation, with the mean measured irradiances being about 5–6% less than the clear-sky values, although at any specific time clouds may reduce or enhance the signal that reaches the sensor. The instantaneous fractional attenuation or enhancement is wavelength dependent, where the percent deviation from the clear-sky irradiance at 400–600 nm is typically 2.5 times that at 320–340 nm. When averaged over the period near each year's summer solstice, significant correlations appear between irradiances at all wavelengths and the solar cycle as measured by the 10.7 cm solar radio flux. An approximate 1.8 ± 1.0% decrease in ground-level irradiance occurs from solar maximum to solar minimum for the wavelength band 320–400 nm. The corresponding decrease for 400–600 nm is 2.4 ± 1.9%. The best-estimate declines appear too large to originate in the sun. If the correlations have a geophysical origin, they suggest a small variation in atmospheric attenuation with the solar cycle over the period of observation, with the greatest attenuation occurring at solar minimum
Light and circadian regulation of clock components aids flexible responses to environmental signals
The circadian clock measures time across a 24h period, increasing fitness by phasing biological processes to the most appropriate time of day. The interlocking feedback loop mechanism of the clock is conserved across species; however, the number of loops varies. Mathematical and computational analyses have suggested that loop complexity affects the overall flexibility of the oscillator, including its responses to entrainment signals. We used a discriminating experimental assay, at the transition between different photoperiods, in order to test this proposal in a minimal circadian network (in Ostreococcus tauri) and a more complex network (in Arabidopsis thaliana). Transcriptional and translational reporters in O.tauri primarily tracked dawn or dusk, whereas in A.thaliana, a wider range of responses were observed, consistent with its more flexible clock. Model analysis supported the requirement for this diversity of responses among the components of the more complex network. However, these and earlier data showed that the O.tauri network retains surprising flexibility, despite its simple circuit. We found that models constructed from experimental data can show flexibility either from multiple loops and/or from multiple light inputs. Our results suggest that O.tauri has adopted the latter strategy, possibly as a consequence of genomic reduction
Lack of involvement of known DNA methyltransferases in familial hydatidiform mole implies the involvement of other factors in establishment of imprinting in the human female germline
BACKGROUND:
Differential methylation of the two alleles is a hallmark of imprinted genes. Correspondingly, loss of DNA methyltransferase function results in aberrant imprinting and abnormal post-fertilization development. In the mouse, mutations of the oocyte-specific isoform of the DNA methyltransferase Dnmt1 (Dnmt1o) and of the methyltransferase-like Dnmt3L gene result in specific failures of imprint establishment or maintenance, at multiple loci. We have previously shown in humans that an analogous inherited failure to establish imprinting at multiple loci in the female germline underlies a rare phenotype of recurrent hydatidiform mole.
RESULTS:
We have identified a human homologue of the murine Dnmt1o and assessed its pattern of expression. Human DNMT1o mRNA is detectable in mature oocytes and early fertilized embryos but not in any somatic tissues analysed. The somatic isoform of DNMT1 mRNA, in contrast, is not detectable in human oocytes. In the previously-described family with multi-locus imprinting failure, mutation of DNMT1o and of the other known members of this gene family has been excluded.
CONCLUSIONS:
Mutation of the known DNMT genes does not underlie familial hydatidiform mole, at least in the family under study. This suggests that trans-acting factors other than the known methyltransferases are required for imprint establishment in humans, a concept that has indirect support from recent biochemical studies of DNMT3L
The kiloparsec-scale star formation law at redshift 4: wide-spread, highly efficient star formation in the dust-obscured starburst galaxy GN20
We present high-resolution observations of the 880 m (rest-frame FIR)
continuum emission in the z4.05 submillimeter galaxy GN20 from the IRAM
Plateau de Bure Interferometer (PdBI). These data resolve the obscured star
formation in this unlensed galaxy on scales of
0.30.2 (2.11.3 kpc).
The observations reveal a bright (161 mJy) dusty starburst centered on the
cold molecular gas reservoir and showing a bar-like extension along the major
axis. The striking anti-correlation with the HST/WFC3 imaging suggests that the
copious dust surrounding the starburst heavily obscures the rest-frame
UV/optical emission. A comparison with 1.2 mm PdBI continuum data reveals no
evidence for variations in the dust properties across the source within the
uncertainties, consistent with extended star formation, and the peak star
formation rate surface density (1198 M yr kpc)
implies that the star formation in GN20 remains sub-Eddington on scales down to
3 kpc. We find that the star formation efficiency is highest in the central
regions of GN20, leading to a resolved star formation law with a power law
slope of , and that
GN20 lies above the sequence of normal star-forming disks, implying that the
dispersion in the star formation law is not due solely to morphology or choice
of conversion factor. These data extend previous evidence for a fixed star
formation efficiency per free-fall time to include the star-forming medium on
kpc-scales in a galaxy 12 Gyr ago.Comment: 6 pages, 5 figures, accepted to ApJ
Star complexes and stellar populations in NGC 6822 - Comparison with the Magellanic Clouds
The star complexes (large scale star forming regions) of NGC 6822 were traced
and mapped and their size distribution was compared with the size distribution
of star complexes in the Magellanic Clouds (MCs). Furthermore, the spatial
distributions of different age stellar populations were compared with each
other. The star complexes of NGC 6822 were determined by using the isopleths,
based on star counts, of the young stars of the galaxy, using a statistical
cutoff limit in density. In order to map them and determine their geometrical
properties, an ellipse was fitted to every distinct region satisfying this
minimum limit. The Kolmogorov-Smirnov statistical test was used to study
possible patterns in their size distribution. Isopleths were also used to study
the stellar populations of NGC 6822. The star complexes of NGC 6822 were
detected and a list of their positions and sizes was produced. Indications of
hierarchical star formation, in terms of spatial distribution, time evolution
and preferable sizes were found in NGC 6822 and the MCs. The spatial
distribution of the various age stellar populations has indicated traces of an
interaction in NGC 6822, dated before 350 +/- 50 Myr.Comment: 10 pages, 7 figures, accepted by A&A; minor typeface correction
- …