57 research outputs found

    Drimane Sesquiterpenes from the Sponge Dysidea

    No full text

    Nmr-studies of [u-c-13]cyclosporin-a Bound To Cyclophilin - Bound Conformation and Portions of Cyclosporine Involved In Binding

    No full text
    Cyclosporin A (CsA), a potent immunosuppressant, is known to bind with high specificity to cyclophilin (CyP), a 17.7 kDa protein with peptidyl-prolyl isomerase activity. In order to investigate the three-dimensional structure of the CsA/CyP complex, we have applied a variety of multidimensional NMR methods in the study of uniformly C-13-labeled CsA bound to cyclophilin. The H-1 and C-13 NMR signals of cyclosporin A in the bound state have been assigned, and, from a quantitative interpretation of the 3D NOE data, the bound conformation of CsA has been determined. Three-dimensional structures of CsA calculated from the NOE data by using a distance geometry/simulated annealing protocol were found to be very different from previously determined crystalline and solution conformations of uncomplexed CsA. In addition, from CsA/CyP NOEs, the portions of CsA that interact with cyclophilin were identified. For the most part, those CsA residues with NOEs to cyclophilin were the same residues important for cyclophilin binding and immunosuppressive activity as determined from structure/activity relationships. The structural information derived in this study together with the known structure/activity relationships for CsA analogues may prove useful in the design of improved immunosuppressants. Moreover, the approach that is described for obtaining the structural information is widely applicable to the study of small molecule/large molecule interactions

    Introduzione

    No full text
    Chemical analysis of an Australian marine sediment-derived Aspergillus sp. (CMB-M081F) yielded the new diketomorpholine (DKM) shornephine A (1) together with two known and one new diketopiperazine (DKP), 15b-β- hydroxy-5-N-acetyladreemin (2), 5-N-acetyladreemin (3), and 15b-β-methoxy-5-N-acetyladreemin (4), respectively. Structure elucidation of 1−4 was achieved by detailed spectroscopic analysis, supported by chemical degradation and derivatization, and biosynthetic considerations. The DKM (1) underwent a facile (auto) acid-mediated methanolysis to yield seco-shornephine A methyl ester (1a). Our mechanistic explanation of this transformation prompted us to demonstrate that the acid-labile and solvolytically unstable DKM scaffold can be stabilized by N-alkylation. Furthermore, we demonstrate that at 20 μM shornephine A (1) is a noncytotoxic inhibitor of P-glycoprotein-mediated drug efflux in multidrug-resistant human colon cancer cells
    corecore