3,206 research outputs found

    A 10 GHz Quasi-Optical Grid Amplifier Using Integrated HBT Differential Pairs

    Get PDF
    We report the fabrication and testing of a 10 GHz grid amplifier utilizing sixteen GaAs chips each containing an HBT differential pair plus integral bias/feedback resistors. The overall amplifier consists of a 4x4 array of unit cells on an RT Duroid™ board having a relative permittivity of 2.2. Each unit cell consists of an emitter-coupled differential pair at the center, an input antenna which extends horizontally in both directions from the two base leads, an output antenna which extends vertically in both directions from the two collector leads, and high inductance bias lines. In operation, the active grid array is placed between a pair of crossed polarizers. The horizontally polarized input wave passes through the input polarizer and couples to the input leads. An amplified current then flows on the vertical leads, which radiate a vertically polarized amplified signal through the output polarizer. The polarizers serve dual functions, providing both input-output isolation as well as independent impedance matching for the input and output ports. The grid thus functions essentially as a free-space beam amplifier. Calculations indicate that output powers of several watts per square centimeter of grid area should be attainable with optimized structures

    Co- variation in soil biodiversity and biogeochemistry in northern and southern Victoria Land, Antarctica

    Get PDF
    Data from six sites in Victoria Land (72–77°S) investigating co-variation in soil communities (microbial and invertebrate) with biogeochemical properties showthe influence of soil properties on habitat suitability varied among local landscapes as well as across climate gradients. Species richness of metazoan invertebrates (Nematoda, Tardigrada and Rotifera) was similar to previous descriptions in this region, though identification of three cryptic nematode species of Eudorylaimus through DNA analysis contributed to the understanding of controls over habitat preferences for individual species. Denaturing Gradient Gel Electrophoresis profiles revealed unexpectedly high diversity of bacteria. Distribution of distinct bacterial communities was associated with specific sites in northern and southern Victoria Land, as was the distribution of nematode and tardigrade species. Variation in soil metazoan communities was related to differences in soil organic matter, while bacterial diversity and community structure were not strongly correlated with any single soil property. There were no apparent correlations between metazoan and bacterial diversity, suggesting that controls over distribution and habitat suitability are different for bacterial and metazoan communities. Our results imply that top-down controls over bacterial diversity mediated by their metazoan consumers are not significant determinants of bacterial community structure and biomass in these ecosystems

    Criteria for the design of tissue-mimicking phantoms for the standardization of biophotonic instrumentation

    Get PDF
    A lack of accepted standards and standardized phantoms suitable for the technical validation of biophotonic instrumentation hinders the reliability and reproducibility of its experimental outputs. In this Perspective, we discuss general criteria for the design of tissue-mimicking biophotonic phantoms, and use these criteria and state-of-the-art developments to critically review the literature on phantom materials and on the fabrication of phantoms. By focusing on representative examples of standardization in diffuse optical imaging and spectroscopy, fluorescence-guided surgery and photoacoustic imaging, we identify unmet needs in the development of phantoms and a set of criteria (leveraging characterization, collaboration, communication and commitment) for the standardization of biophotonic instrumentation

    A New Cecal Slurry Preparation Protocol with Improved Long-Term Reproducibility for Animal Models of Sepsis

    Get PDF
    Sepsis, a life-threatening systemic inflammatory response syndrome induced by infection, is widely studied using laboratory animal models. While cecal-ligation and puncture (CLP) is considered the gold standard model for sepsis research, it may not be preferable for experiments comparing animals of different size or under different dietary regimens. By comparing cecum size, shape, and cecal content characteristics in mice under different experimental conditions (aging, diabetes, pancreatitis), we show that cecum variability could be problematic for some CLP experiments. The cecal slurry (CS) injection model, in which the cecal contents of a laboratory animal are injected intraperitoneally to other animals, is an alternative method for inducing polymicrobial sepsis; however, the CS must be freshly prepared under conventional protocols, which is a major disadvantage with respect to reproducibility and convenience. The objective of this study was to develop an improved CS preparation protocol that allows for long-term storage of CS with reproducible results. Using our new CS preparation protocol we found that bacterial viability is maintained for at least 6 months when the CS is prepared in 15% glycerol-PBS and stored at -80°C. To test sepsis-inducing efficacy of stored CS stocks, various amounts of CS were injected to young (4-6 months old), middle-aged (12-14 months old), and aged (24-26 months old) male C57BL/6 mice. Dose- and age-dependent mortality was observed with high reproducibility. Circulating bacteria levels strongly correlated with mortality suggesting an infection-mediated death. Further, injection with heat-inactivated CS resulted in acute hypothermia without mortality, indicating that CS-mediated death is not due to endotoxic shock. This new CS preparation protocol results in CS stocks which are durable for freezing preservation without loss of bacterial viability, allowing experiments to be performed more conveniently and with higher reproducibility than before

    Host specificity and species colouration mediate the regional decline of nocturnal moths in central European forests

    Get PDF
    The high diversity of insects has limited the volume of long-term community data with a high taxonomic resolution and considerable geographic replications, especially in forests. Therefore, trends and causes of changes are poorly understood. Here we analyse trends in species richness, abundance and biomass of nocturnal macro moths in three quantitative data sets collected over four decades in forests in southern Germany. Two local data sets, one from coppiced oak forests and one from high oak forests included 125K and 48K specimens from 559 and 532 species, respectively. A third regional data set, representing all forest types in the temperate zone of central Europe comprised 735K specimens from 848 species. Generalized additive mixed models revealed temporal declines in species richness (−38%), abundance (−53%) and biomass (−57%) at the regional scale. These were more pronounced in plant host specialists and in dark coloured species. In contrast, the local coppiced oak forests showed an increase, in species richness (+62%), while the high oak forests showed no clear trends. Left and right censoring as well as cross validation confirmed the robustness of the analyses, which led to four conclusions. First, the decline in insects appears in hyper diverse insect groups in forests and affects species richness, abundance and biomass. Second, the pronounced decline in host specialists suggests habitat loss as an important driver of the observed decline. Third, the more severe decline in dark species might be an indication of global warming as a potential driver. Fourth, the trends in coppiced oak forests indicate that maintaining complex and diverse forest ecosystems through active management may be a promising conservation strategy in order to counteract negative trends in biodiversity, alongside rewilding approaches

    Neo-Aristotelian Naturalism and the Evolutionary Objection: Rethinking the Relevance of Empirical Science

    Get PDF
    Neo-Aristotelian metaethical naturalism is a modern attempt at naturalizing ethics using ideas from Aristotle’s teleological metaphysics. Proponents of this view argue that moral virtue in human beings is an instance of natural goodness, a kind of goodness supposedly also found in the realm of non-human living things. Many critics question whether neo-Aristotelian naturalism is tenable in light of modern evolutionary biology. Two influential lines of objection have appealed to an evolutionary understanding of human nature and natural teleology to argue against this view. In this paper, I offer a reconstruction of these two seemingly different lines of objection as raising instances of the same dilemma, giving neo-Aristotelians a choice between contradicting our considered moral judgment and abandoning metaethical naturalism. I argue that resolving the dilemma requires showing a particular kind of continuity between the norms of moral virtue and norms that are necessary for understanding non-human living things. I also argue that in order to show such a continuity, neo-Aristotelians need to revise the relationship they adopt with empirical science and acknowledge that the latter is relevant to assessing their central commitments regarding living things. Finally, I argue that to move this debate forward, both neo-Aristotelians and their critics should pay attention to recent work on the concept of organism in evolutionary and developmental biology

    Restrictive ID policies: implications for health equity

    Get PDF
    We wish to thank Synod Community Services for their critical work to develop, support, and implement a local government-issued ID in Washtenaw County, MI. We also thank Yousef Rabhi of the Michigan House of Representatives and Janelle Fa'aola of the Washtenaw ID Task Force, Lawrence Kestenbaum of the Washtenaw County Clerk's Office, Sherriff Jerry Clayton of the Washtenaw County Sherriff's Office, and the Washtenaw ID Task Force for their tireless commitment to developing and supporting the successful implementation of the Washtenaw ID. Additionally, we thank Vicenta Vargas and Skye Hillier for their contributions to the Washtenaw ID evaluation. We thank the Curtis Center for Research and Evaluation at the University of Michigan School of Social Work, the National Center for Institutional Diversity at the University of Michigan, and the University of California-Irvine Department of Chicano/Latino Studies and Program in Public Health for their support of the Washtenaw ID community-academic research partnership. Finally, we thank the reviewers for their helpful comments on earlier drafts of this manuscript. (Curtis Center for Research and Evaluation at the University of Michigan School of Social Work; National Center for Institutional Diversity at the University of Michigan; University of California-Irvine Department of Chicano/Latino Studies; Program in Public Health)https://link.springer.com/content/pdf/10.1007/s10903-017-0579-3.pdfPublished versio
    corecore