2,764 research outputs found
Nonadiabatic Superconductivity and Vertex Corrections in Uncorrelated Systems
We investigate the issue of the nonadiabatic superconductivity in
uncorrelated systems. A local approximation is employed coherently with the
weak dependence on the involved momenta. Our results show that nonadiabatic
vertex corrections are never negligible, but lead to a strong suppression of
with respect to the conventional theory. This feature is understood in
terms of the momentum-frequency dependence of the vertex function. In contrast
to strongly correlated systems, where the small -selection probes the
positive part of vertex function, vertex corrections in uncorrelated systems
are essentially negative resulting in an effective reduction of the
superconducting pairing. Our analysis shows that vertex corrections in
nonadiabatic regime can be never disregarded independently of the degree of
electronic correlation in the system.Comment: 4 pages, 3 eps fig
Electron-phonon renormalization in small Fermi energy systems
The puzzling features of recent photoemission data in cuprates have been
object of several analysis in order to identity the nature of the underlying
electron-boson interaction. In this paper we point out that many basilar
assumptions of the conventional analysis as expected to fail in small Fermi
energy systems when, as the cuprates, the Fermi energy is
comparable with the boson energy scale. We discuss in details the novel
features appearing in the self-energy of small Fermi energy systems and the
possible implications on the ARPES data in cuprates.Comment: 4 pages, 5 eps figures include
Nonadiabatic Pauli susceptibility in fullerene compounds
Pauli paramagnetic susceptibility is unaffected by the electron-phonon
interaction in the Migdal-Eliashberg context. Fullerene compounds however do
not fulfill the adiabatic assumption of Migdal's theorem and nonadiabatic
effects are expected to be relevant in these materials. In this paper we
investigate the Pauli spin susceptibility in nonadiabatic regime by following a
conserving approach based on Ward's identity. We find that a sizable
renormalization of due to electron-phonon coupling appears when
nonadiabatic effects are taken into account. The intrinsic dependence of
on the electron-phonon interaction gives rise to a finite and negative isotope
effect which could be experimentally detected in fullerides. In addition, we
find an enhancement of the spin susceptibility with temperature increasing, in
agreement with the temperature dependence of observed in fullerene
compounds. The role of electronic correlation is also discussed.Comment: Revtex, 10 pages, 8 figures include
Longitudinal and transversal piezoresistive response of granular metals
In this paper, we study the piezoresistive response and its anisotropy for a
bond percolation model of granular metals. Both effective medium results and
numerical Monte Carlo calculations of finite simple cubic networks show that
the piezoresistive anisotropy is a strongly dependent function of bond
probability p and of bond conductance distribution width \Delta g. We find that
piezoresistive anisotropy is strongly suppressed as p is reduced and/or \Delta
g is enhanced and that it vanishes at the percolation thresold p=p_c. We argue
that a measurement of the piezoresistive anisotropy could be a sensitive tool
to estimate critical metallic concentrations in real granular metals.Comment: 14 pages, 7 eps figure
Parallel pumping of magnetic vortex gyrations in spin-torque nano-oscillators
We experimentally demonstrate that large magnetic vortex oscillations can be
parametrically excited in a magnetic tunnel junction by the injection of
radio-frequency (rf) currents at twice the natural frequency of the gyrotropic
vortex core motion. The mechanism of excitation is based on the parallel
pumping of vortex motion by the rf orthoradial field generated by the injected
current. Theoretical analysis shows that experimental results can be
interpreted as the manifestation of parametric amplification when rf current is
small, and of parametric instability when rf current is above a certain
threshold. By taking into account the energy nonlinearities, we succeed to
describe the amplitude saturation of vortex oscillations as well as the
coexistence of stable regimes.Comment: Submitted to Phys. Rev. Let
Breaking the silence of the 500-year-old smiling garden of everlasting flowers: The En Tibi book herbarium
We reveal the enigmatic origin of one of the earliest surviving botanical collections. The 16th-century Italian En Tibi herbarium is a large, luxurious book with c. 500 dried plants, made in the Renaissance scholarly circles that developed botany as a distinct discipline. Its Latin inscription, translated as âHere for you a smiling garden of everlasting flowersâ, suggests that this herbarium was a gift for a patron of the emerging botanical science. We follow an integrative approach that includes a botanical similarity estimation of the En Tibi with contemporary herbaria (Aldrovandi, Cesalpino, âCiboâ, Merini, Estense) and analysis of the bookâs watermark, paper, binding, handwriting, Latin inscription and the morphology and DNA of hairs mounted under specimens. Rejecting the previous origin hypothesis (Ferrara, 1542â1544), we show that the En Tibi was made in Bologna around 1558. We attribute the En Tibi herbarium to Francesco Petrollini, a neglected 16th-century botanist, to whom also belongs, as clarified herein, the controversial âErbario Ciboâ kept in Rome. The En Tibi was probably a work on commission for Petrollini, who provided the plant material for the book. Other people were apparently involved in the compilation and offering of this precious gift to a yet unknown person, possibly the Habsburg Emperor Ferdinand I. The En Tibi herbarium is a Renaissance masterpiece of art and science, representing the quest for truth in herbal medicine and botany. Our multidisciplinary approach can serve as a guideline for deciphering other anonymous herbaria, kept safely âhiddenâ in treasure rooms of universities, libraries and museums
Band-filling effects on electron-phonon properties of normal and superconducting state
We address the effect of band filling on the effective electron mass
and the superconducting critical temperature in a electron-phonon system.
We compare the vertex corrected theory with the non-crossing approximation of
the Holstein model within a local approximation. We identify two regions of the
electron density where and are enhanced or decreased by the
inclusion of the vertex diagrams. We show that the crossover between the
enhancement at low density and the decrease towards half filling is almost
independent of the microscopic electron-phonon parameters. These different
behaviors are explained in terms of the net sign of the vertex diagrams which
is positive at low densities and negative close to half filling. Predictions of
the present theory for doped MgB, which is argued to be in the low density
regime, are discussed.Comment: 13 revtex pages, figures eps include
- âŠ