65 research outputs found

    Approximation of Partially Smooth Functions

    Full text link
    In this paper we discuss approximation of partially smooth functions. The problem arises naturally in the study of laminated currents

    On the smoothness of Levi-foliations

    Get PDF
    We study the regularity of the induced foliation of a Levi-flat hypersurface in C'°, showing that the foliation is as many times continuously differentiable as the hypersurface itself. The key step in the proof given here is the construction of a certain family of approximate plurisubharmonic defining functions for the hypersurface in question

    Some open problems in higher dimensional complex analysis and complex dynamics

    Full text link

    Distribution of periodic points of polynomial diffeomorphisms of C^2

    Full text link
    This paper deals with the dynamics of a simple family of holomorphic diffeomorphisms of \C^2: the polynomial automorphisms. This family of maps has been studied by a number of authors. We refer to [BLS] for a general introduction to this class of dynamical systems. An interesting object from the point of view of potential theory is the equilibrium measure μ\mu of the set KK of points with bounded orbits. In [BLS] μ\mu is also characterized dynamically as the unique measure of maximal entropy. Thus μ\mu is also an equilibrium measure from the point of view of the thermodynamical formalism. In the present paper we give another dynamical interpretation of μ\mu as the limit distribution of the periodic points of ff

    Measurement induced chaos with entangled states

    Full text link
    The dynamics of an ensemble of identically prepared two-qubit systems is investigated which is subjected to the iteratively applied measurements and conditional selection of a typical entanglement purification protocol. It is shown that the resulting measurement-induced non-linear dynamics of the two-qubit state exhibits strong sensitivity to initial conditions and also true chaos. For a special class of initially prepared two-qubit states two types of islands characterize the asymptotic limit. They correspond to a separable and a maximally entangled two-qubit state, respectively, and their boundaries form fractal-like structures. In the presence of incoherent noise an additional stable asymptotic cycle appears.Comment: 5 pages, 3 figure

    Ergodic properties of fibered rational maps

    Full text link
    We study the ergodic properties of fibered rational maps of the Riemann sphere. In particular we compute the topological entropy of such mappings and construct a measure of maximal relative entropy. The measure is shown to be the unique one with this property. We apply the results to selfmaps of ruled surfaces and to certain holomorphic mapping of the complex projective plane P 2 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43942/1/11512_2006_Article_BF02384321.pd

    Classification of recurrent domains for some holomorphic maps

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46244/1/208_2005_Article_BF01446660.pd

    Remarks on the rank properties of formal CR maps

    Full text link
    We prove several new transversality results for formal CR maps between formal real hypersurfaces in complex space. Both cases of finite and infinite type hypersurfaces are tackled in this note

    Stein structures and holomorphic mappings

    Full text link
    We prove that every continuous map from a Stein manifold X to a complex manifold Y can be made holomorphic by a homotopic deformation of both the map and the Stein structure on X. In the absence of topological obstructions the holomorphic map may be chosen to have pointwise maximal rank. The analogous result holds for any compact Hausdorff family of maps, but it fails in general for a noncompact family. Our main results are actually proved for smooth almost complex source manifolds (X,J) with the correct handlebody structure. The paper contains another proof of Eliashberg's (Int J Math 1:29--46, 1990) homotopy characterization of Stein manifolds and a slightly different explanation of the construction of exotic Stein surfaces due to Gompf (Ann Math 148 (2):619--693, 1998; J Symplectic Geom 3:565--587, 2005). (See also the related preprint math/0509419).Comment: The original publication is available at http://www.springerlink.co
    corecore