16,599 research outputs found

    Heavy quark collisional energy loss in the quark-gluon plasma including finite relaxation time

    Get PDF
    In this paper, we calculate the soft-collisional energy loss of heavy quarks traversing the viscous quark-gluon plasma including the effects of a finite relaxation time τπ\tau_\pi on the energy loss. We find that the collisional energy loss depends appreciably on τπ\tau_\pi . In particular, for typical values of the viscosity-to-entropy ratio, we show that the energy loss obtained using τπ\tau_\pi = 0 can be ∼\sim 10%\% larger than the one obtained using τπ\tau_\pi = 0. Moreover, we find that the energy loss obtained using the kinetic theory expression for τπ\tau_\pi is much larger that the one obtained with the τπ\tau_\pi derived from the Anti de Sitter/Conformal Field Theory correspondence. Our results may be relevant in the modeling of heavy quark evolution through the quark-gluon plasma.Comment: v2: 5 pages, 4 figures, added references. Accepted for publication in Phys. Rev.

    Higgs windows to new physics through d = 6 operators: Constraints and one-loop anomalous dimensions

    Full text link
    The leading contributions from heavy new physics to Higgs processes can be captured in a model-independent way by dimension-six operators in an effective Lagrangian approach. We present a complete analysis of how these contributions affect Higgs couplings. Under certain well-motivated assumptions, we find that 8 CP-even plus 3 CP-odd Wilson coefficients parametrize the main impact in Higgs physics, as all other coefficients are constrained by non-Higgs SM measurements. We calculate the most relevant anomalous dimensions for these Wilson coefficients, which describe operator mixing from the heavy scale down to the electroweak scale. This allows us to find the leading-log corrections to the predictions for the Higgs couplings in specific models, such as the MSSM or composite Higgs, which we find to be significant in certain cases.Comment: 45 pages. Some minor typos fixed. Matches published versio

    A Near-Infrared L Band Survey of the Young Embedded Cluster NGC 2024

    Full text link
    We present the results of the first sensitive L band (3.4 micron) imaging study of the nearby young embedded cluster NGC 2024. Two separate surveys of the cluster were acquired in order to obtain a census of the circumstellar disk fraction in the cluster. From an analysis of the JHKL colors of all sources in our largest area, we find an infrared excess fraction of > 86%. The JHKL colors suggest that the infrared excesses arise in circumstellar disks, indicating that the majority of the sources which formed in the NGC 2024 cluster are currently surrounded by, and likely formed with circumstellar disks. The excess fractions remain very high, within the errors, even at the faintest L magnitudes from our deeper surveys suggesting that disks form around the majority of the stars in very young clusters such as NGC 2024 independent of mass. From comparison with published JHKL observations of Taurus, we find the K - L excess fraction in NGC 2024 to be consistent with a high initial incidence of circumstellar disks in both NGC 2024 and Taurus. Because NGC 2024 represents a region of much higher stellar density than Taurus, this suggests that disks may form around most of the YSOs in star forming regions independent of environment. We find a relatively constant JHKL excess fraction with increasing cluster radius, indicating that the disk fraction is independent of location in the cluster. In contrast, the JHK excess fraction increases rapidly toward the central region of the cluster, and is most likely due to contamination of the K band measurements by bright nebulosity in the central regions of the cluster. We identify 45 candidate protostellar sources in the central regions of the NGC 2024 cluster, and find a lower limit on the protostellar phase of early stellar evolution of 0.4 - 1.4 X 10^5 yr, similar to that in Taurus.Comment: 37 pages, 8 figures, 3 tables, To appear in the Astronomical Journa

    Renormalization of dimension-six operators relevant for the Higgs decays h→γγ,γZh\rightarrow \gamma\gamma,\gamma Z

    Full text link
    The discovery of the Higgs boson has opened a new window to test the SM through the measurements of its couplings. Of particular interest is the measured Higgs coupling to photons which arises in the SM at the one-loop level, and can then be significantly affected by new physics. We calculate the one-loop renormalization of the dimension-six operators relevant for h→γγ,γZh\rightarrow \gamma\gamma, \gamma Z, which can be potentially important since it could, in principle, give log-enhanced contributions from operator mixing. We find however that there is no mixing from any current-current operator that could lead to this log-enhanced effect. We show how the right choice of operator basis can make this calculation simple. We then conclude that h→γγ,γZh\rightarrow \gamma\gamma, \gamma Z can only be affected by RG mixing from operators whose Wilson coefficients are expected to be of one-loop size, among them fermion dipole-moment operators which we have also included.Comment: 21 pages. Improved version with h -> gamma Z results added and structure of anomalous-dimension matrix determined further. Conclusions unchange

    Analisis Finansial Pemanenan Kayu Teknik Reduced Impact Logging Melalui Skema REDD+, Kalimantan Utara

    Full text link
    The research was done at natural tropical forest of PT Inhutani II, East Kalimantan. The objectivesof the research were to study the carbon (C) stock in the natural tropical forest after conventional andreduced impact logging (RIL) and to get the effectivity of RIL based on carbon stock, financial andenvironmental aspects. The effect of conventional and RIL to environment and carbon stock in theplots were studied using the data of three plots with each size 100 m x 100 m. The plots are placedbased on purposive sampling at landing, main skiddtrail and branch skiddtrail, respectively. Cstocks are counted by allometric equation and C economics by the economic acceptance of REDD.Economic value of RIL was IDR 1,604,518,900,- ha-1. Based on financial analysis showed that RILwas feasible and profitable at rate of interesst 16 %

    High Resolution Mid-Infrared Imaging of Ultraluminous Infrared Galaxies

    Get PDF
    Observations of ultraluminous infrared galaxies (ULIRGs) with an achieved resolution approaching the diffraction limit in the mid-infrared from 8 - 25 μ\mum using the Keck Telescopes are reported. We find extremely compact structures, with spatial scales of <0.3′′< 0.3'' (diameter) in six of the seven ULIRGs observed. These compact sources emit between 30% and 100% of the mid-infrared energy from these galaxies. We have utilized the compact mid-infrared structures as a diagnostic of whether an AGN or a compact (100 -- 300 pc) starburst is the primary power source in these ULIRGs. In Markarian 231, the upper limit on the diameter of the 12.5 μ\mum source, 0.13′′'', shows that the size of the infrared source must increase with increasing wavelength, consistent with AGN models. In IRAS 05189-2524 and IRAS 08572+3915 there is strong evidence that the source size increases with increasing wavelength. This suggests heating by a central source rather than an extended luminosity source, consistent with the optical classification as an AGN. The compact mid-infrared sources seen in the other galaxies cannot be used to distinguish the ultimate luminosity source. If these ULIRGs are powered by compact starbursts, the star formation rates seen in the central few hundred parsecs far exceed the global rates seen in nearby starburst galaxies, and approach the surface brightness of individual clusters in nearby starburst galaxies.Comment: 33pages, 6 tables, 5 figures, Accepted for publication in A

    Supervised Learning in Multilayer Spiking Neural Networks

    Get PDF
    The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.Comment: 38 pages, 4 figure

    Probing the Electronic Structure of Bilayer Graphene by Raman Scattering

    Full text link
    The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some of them differ significantly from those reported previously for graphite, specially that associated with the difference of the effective mass of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.Comment: 4 pages, 4 figure

    On the origin of the neutral hydrogen supershells: the ionized progenitors and the limitations of the multiple supernovae hypothesis

    Full text link
    Here we address the question whether the ionized shells associated with giant HII regions can be progenitors of the larger HI shell-like objects found in the Milky Way and other spiral and dwarf irregular galaxies. We use for our analysis a sample of 12 HII shells presented recently by Rela\~no et al. (2005, 2007). We calculate the evolutionary tracks that these shells would have if their expansion is driven by multiple supernovae explosions from the parental stellar clusters. We find, contrary to Rela\~no et al. (2007), that the evolutionary tracks of their sample HII shells are inconsistent with the observed parameters of the largest and most massive neutral hydrogen supershells. We conclude that HII shells found inside giant HII regions may represent the progenitors of small or intermediate HI shells, however they cannot evolve into the largest HI objects unless, aside from the multiple supernovae explosions, an additional energy source contributes to their expansion.Comment: Accepted for publication in ApJ, tentatively scheduled for the ApJ July 1, 2008, v681n1 issue. 19 pages, 4 figure
    • …
    corecore