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In this paper, we calculate the soft-collisional energy loss of heavy quarks traversing the viscous quark-
gluon plasma including the effects of a finite relaxation time τπ on the energy loss. We find that the
collisional energy loss depends appreciably on τπ . In particular, for typical values of the viscosity-to-
entropy ratio, we show that the energy loss obtained using τπ ≠ 0 can be ∼10% larger than the one obtained
using τπ ¼ 0. Moreover, we find that the energy loss obtained using the kinetic theory expression for τπ is
much larger than the one obtained with the τπ derived from the anti–de Sitter/conformal field theory
correspondence. Our results may be relevant in the modeling of heavy quark evolution through the quark-
gluon plasma.
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I. INTRODUCTION

Achieving a deep understanding of the phenomenon of
quark energy loss in the quark-gluon plasma (QGP) is of
crucial importance for the correct interpretation of data on
hadron suppression at the Relativistic Heavy Ion Collider
(RHIC) and the Large Hadron Collider (LHC), as well as
for gaining insight on the thermalization process of matter
created in these experimental facilities [1–10].
Quark energy loss can occur due to gluon radiation or

(hard or soft) collisions. For low energy heavy quarks, the
dominant energy loss mechanism is the collision of the
heavy quark with the constituents of the QGP (see, for
example, Refs. [5–14]). We calculate the collisional energy
loss of a heavy quark traversing the QGP including the
effects of a finite relaxation time τπ on the energy loss. To
our knowledge, this is the first study of collisional energy
loss in the QGP including τπ (see Ref. [15] for a
related study).
To compute the energy loss including a finite relaxation

time τπ , we use the QGP polarization tensor that is derived
from the effective hydrodynamic formalism developed by
two of us in [16–19]. This model, which is constructed
from the entropy production variational method [20],
incorporates the effect of higher order velocity gradients
into the hydrodynamic description of the QGP, thus
extending the applicability of a macroscopic description
to strongly out of equilibrium situations, such as early time
dynamics of the plasma or the most peripheral collisions.
We have shown that the model is able to reproduce the

results from kinetic theory even in highly nonequilibrium
regimes [21] (see also Ref. [22] for a study of the Weibel
instability based on this model).
The paper is organized as follows. In Sec. II we provide a

brief overview of collisional energy loss in the QGP and
describe the polarization tensor as obtained from the
effective hydrodynamic model. In Sec. III we present
and discuss our results, and in Sec. IV we conclude.

II. COLLISIONAL ENERGY LOSS

We will consider an isotropic, nonexpanding QGP and
compute the collisional energy loss dE=dx of a charm
quark that transverses it (x is the distance traveled by
the quark).
The soft-collisional energy loss of a fast particle trans-

versing the QGP can be calculated by linearizing Wong’s
equations; see Refs. [23–26]. In this work we consider a
stable plasma, for which all modes are damped and there
are no instabilities. This means that the energy loss is solely
due to Landau damping, i.e. ω ¼ k:v, where ω and k are
the frequency and wave vector of the excitation, and v is
the quark’s velocity. The collisional energy loss is then
given by

−
dE
dx

¼ CFg2

v

Z
d3k
ð2πÞ3

�
ωImðϵLðω;kÞÞ
k2jϵLðω;kÞj2

þðv2 − ω2

k2ÞImðϵTðω;kÞÞ
ωjϵTðω;kÞ − k2

ω2 j2
�
ω¼k:v

; ð1Þ

where CF is the quark constant, and ϵL (ϵT) is the
longitudinal (transverse) part of the dielectric tensor ϵij*maueli@cab.cnea.gov.ar
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(latin indices stand for spatial components). The dielectric
tensor and its components can be written in terms of the
polarization tensor using Eqs. (2)–(4).

ϵij ¼ δij þ 1

ω2
Γij; ð2Þ

ϵL ¼ kikj
kαkα

ϵij; ð3Þ

ϵT ¼ 1

2
½TrðϵijÞ − ϵL�: ð4Þ

The polarization tensor characterizes the linear response
of the QGP to external perturbations, which in this case is a
quark crossing the QGP with constant velocity. As men-
tioned in the Introduction, in this paper we shall use the
polarization tensor that is derived from the effective hydro-
dynamic theory developed in Refs. [16–19,21]. This theory
incorporates the effect of higher order velocity gradients
into the hydrodynamic description of the QGP, thus
extending its applicability to strongly out of equilibrium
regimes (such as early time dynamics, most peripheral
collisions, and the borders of the fireball).
The polarization tensor relates the current induced by a

small change in the vector potential to the change itself,

δJμa ¼ −Γμν
abA

b
ν : ð5Þ

Two of us have shown that in the effective theory developed
in [19], the polarization tensor reads

Γμν
ab ¼ −δab

ω2
pl

ð1þW2W4ÞðkαuαÞ2
½ðkαuαkμ − kαkαuμÞuν

þ kαuαðuμkν − kαuαgμνÞ − ðW1 þW3Þ
× ðkαuαkμ − kαkαuμÞðkαuαkν − kαkαuνÞ� ð6Þ

with Wi (i ¼ 1; 2; 3; 4) given by

W1 ¼ −½ðkαkαÞ2 þ ðc−2s − 1ÞðkαuαÞ2�−1; ð7Þ

W2 ¼
η

ð1þ c2sÞρ̄ðkαuαÞ½1þ iτπðkαuαÞ�
; ð8Þ

W3 ¼ −
W2ð1þ 4W1W4Þ

3þ 3c2sW4=ðkαuαÞ2 þ 4W2W4

; ð9Þ

W4 ¼ kαkα − ðkαuαÞ2: ð10Þ

Here kμ ¼ ðω; kx; ky; kzÞ≡ ðω;kÞ is the four-wave vector,
uμ ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2x þ u2y þ u2z

q
; ux; uy; uzÞ is the plasma four-

velocity (uαuα ¼ 1), and ω2
pl ¼ 1

3
m2

D is the plasma fre-
quency with Debye mass mD. ρ̄ is the energy density in the
(homogeneous) unperturbed plasma. As shown in
Ref. [27], to reproduce the longitudinal modes obtained

from a first order hard-thermal loop expansion, the square
of the speed of sound c2s must be taken as

c2s ¼
1

3

�
1þ 1

2y
ln

�
1 − y
1þ y

��
−1

þ 1

y2
ð11Þ

with y ¼
ffiffiffiffiffiffi
k2

p
=ω, instead of the ideal value c2s ¼ 1=3.

We note that the result for Γμν is the same as that obtained
from first-order hydrodynamics (colorless Navier-Stokes)
that was obtained in Refs. [28,29], but with an effective
shear viscosity ηeff given by

ηeff ¼
η

1þ iτπðkαuαÞ
: ð12Þ

The appearance of ηeff in place of η is quite natural since τπ
is precisely the relaxation time of the shear tensor Πμν

toward its Navier-Stokes value [30]. In the context of
collisional energy loss, a finite value of τπ will imply that if
a color excitation is produced in the QGP by the passage of
a quark, it will decay slower than if τπ was zero. As we shall
see in the next section, this feature has significant effects on
the collisional energy loss of quarks crossing the vis-
cous QGP.

III. RESULTS

The two most widely used models for the relaxation time
τπ as an input in hydrodynamic simulations of the QGP are
the one derived from Boltzmann’s equation and the one
obtained from the AdS/CFT correspondence for a strongly
coupledN ¼ 4 supersymmetric Yang-Mills plasma. For an
in-depth discussion of the relaxation time in weakly and
strongly coupled plasmas, we refer the reader to
Refs. [31–34].
To better understand the impact of a finite relaxation time

on quark collisional energy loss, we show results for the
energy loss obtained in three cases: τπ ¼ 0, τπjBoltz ¼
5η=ðsTÞ [31] and τπjAdS=CFT ¼ ð2 − ln 2Þ=ð2πTÞ [30].
Additionally, as a baseline we have calculated the energy
loss in the ideal case, in which η=s ¼ 0 and τπ ¼ 0.
In what follows, unless otherwise stated we consider a

charm quark (mc ¼ 1.27 GeV) and the plasma at rest
uμ ¼ ð1; 0; 0; 0Þ, and we fix the temperature to a typical
value of T ¼ 0.3 GeV and the coupling constant
to g ¼ 0.2.
Figure 1 shows the quark’s energy loss as a function of

momentum, for ideal and viscous QGP with η=s ¼ 3=4π. It
can be observed that the energy loss is maximum for
vanishing viscosity; the reason for this behavior will be
explained later on when presenting our results with varying
values of η=s. Comparing the ideal and viscous cases, it is
seen that the energy loss in the ideal fluid case can be
roughly 25% larger than the one obtained in the viscous
case. Our results are consistent with those of Ref. [29]. This
shows that the effects of including the viscosity of the
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medium on the collisional energy loss of fast particles is
significant.
From Fig. 1, it can also be seen that the effect of τπ is to

increase the energy loss with respect to the τπ ¼ 0 case. In
the case of the relaxation time corresponding to AdS/CFT,
τπjAdS=CFT, the effect of the relaxation time on the energy
loss is very small. In contrast, for τπjBoltz the effect of the
relaxation time on the energy loss is appreciable. It is seen
that for a typical 5 fm medium, the difference in the energy
loss for different relaxation times can be at most 10%.

The difference between the results for dE=dx obtained
using both models for τπ arise because τπjBoltz has an
explicit dependence on η=s and with temperature T,
whereas τπjAdS=CFT depends only on T. As mentioned
above, in this work the temperature is fixed, so
τπjAdS=CFT is a constant, but τπjBoltz increases with increas-
ing η=s, and therefore the ηeff corresponding to kinetic
theory becomes smaller than the ηeff corresponding to AdS/
CFT. As a consequence of this, the energy loss obtained
using τπjAdS=CFT is smaller than the energy loss obtained
using τπjBoltz.
Figure 2 shows the energy loss as a function of η=s,

obtained by including or not the time relaxation. The figure
corresponds to a quark moving at v ¼ 0.9c.
Again one can observe that as the value of η=s increases,

the energy loss decreases. This agrees with the results
obtained very recently by Jiang et al. [29]. In kinetic theory,
the viscosity is η ¼ p̄=ð3σtrÞ [10] where p̄ is the mean value
of particle momentum in the medium and σtr is the transport
cross section. Since the temperature is fixed, so is p̄, and
therefore when the viscosity increases the cross section
decreases, so that the number of collisions with QGP
particles decreases, implying less energy loss.
It can be seen from Fig. 2 that the differences in dE=dx

between the cases with τπ ¼ 0 and τπjAdS=CFT are rather
small throughout the whole range of values for η=s that we
consider. The situation is different for the case including
τπjBoltz, for which the differences with the τπ ¼ 0 case are
significant. For η=s < 0.35, the energy loss calculated by
including τπjBoltz can be up to 20% larger than that
corresponding to τπ ¼ 0, with the difference between both
cases rising with increasing values of η=s. We note that for

FIG. 1 (color online). Energy loss as a function of quark’s
momentum for ideal and viscous QGP with η=s ¼ 3=4π, with
τπ ¼ 0 and τπ ≠ 0. The temperature of the plasma isT ¼ 0.3 GeV.

FIG. 2 (color online). Energy loss as a function of η=s for a
charm quark moving at v ¼ 0.9c, for the cases with vanishing or
finite τπ . The temperature of the plasma is T ¼ 0.3 GeV.

FIG. 3 (color online). Ratio of the energy loss calculated for
v ¼ 0.7c to that calculated for v ¼ 0.99c, as a function of η=s.
The temperature of the plasma is T ¼ 0.3 GeV.
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the range of typical values for η=s at RHIC and LHC,
namely 0.08 < η=s < 0.24, the impact of τπjBoltz on dE=dx
is at most 10%.
To better quantify the effect of changing the value of

quark velocity v has on collisional energy loss, Fig. 3
shows the ratio of dE=dx calculated for v ¼ 0.7c to dE=dx
calculated for v ¼ 0.99c, as a function of η=s. It is seen
that, as expected, a slower quark loses less energy due to
collisions than a faster one. The ratio is 0.7, and it slightly
increases with increasing η=s.
To end up, it is interesting to compare the collisional

energy loss of a charm quark to that of a bottom quark.
Figure 4 shows dE=dx as a function of momentum for both
quarks, obtained with τπ ¼ 0, τπjBoltz or τπjAdS=CFT, with
η=s ¼ 3=ð4πÞ. As expected, the energy loss is larger for the
charm quark. We note that the dependence of dE=dx on
relaxation time is similar in both cases.

IV. CONCLUSIONS

We have shown that viscosity effects on the collisional
energy loss of heavy quarks through the QGP are impor-
tant. Comparing the ideal and viscous cases for realistic
values of η=s, it is seen that the energy loss in the ideal fluid
case can be roughly 25% larger than the one obtained in the
viscous case.
We have also studied the effect of a finite relaxation time

τπ on collisional energy loss, and found that the effect is
appreciable. In particular, we have compared the two most
widely used models for τπ, namely the one derived from
kinetic theory and the one derived from the AdS/CFT
correspondence, finding that the effect on energy loss is
largest in the former. For realistic values of the shear
viscosity to entropy ratio, the difference in energy loss
obtained from both models for τπ is roughly 10%. Most
importantly, there is a qualitative difference in the way
energy loss depends on η=s and quark momentum in one
and the other model for τπ. This opens up the possibility of
using energy deposition to discriminate which model best
represents the physics of the quark gluon plasma.
Last but not least, the effect of τπ on the energy

deposition on the plasma has a corresponding effect on
the back reaction of the plasma on the traversing quark, and
therefore modifies the diffusive propagation of the quark
itself [35–37]. This effect could show up in the analysis of
such observables as quarkonium suppression [38,39]. Of
course, a nonzero τπ will more generally affect the
expansion of the QGP as a whole and therefore its cooling,
an effect that also should be taken into account.
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