6,724 research outputs found

    Heat pipe fatigue test specimen: Metallurgical evaluation

    Get PDF
    An innovative creep/fatigue test was run to simulate the temperature, mechanical load, and sodium corrosion conditions expected in a heat pipe designed to supply thermal energy to a Stirling cycle power converter. A sodium-charged Inconel 718 heat pipe with a Nickel 200 screen wick was operated for 1090 hr at temperatures between 950 K (1250 F) and 1050 K (1430 F) while being subjected to creep and fatigue loads in a servo-hydraulic testing machine. After testing, the heat pipe was sectioned and examined using optical microscopy, scanning electron microscopy, and electron microprobe analysis with wavelength dispersive x-ray spectroscopy. The analysis concentrated on evaluating topographic, microstructural, and chemical changes in the sodium exposed surfaces of the heat pipe wall and wick. Surface changes in the evaporator, condenser, and adiabatic sections of the heat pipe were examined in an effort to correlate the changes with the expected sodium environment in the heat pipe. This report describes the setup, operating conditions, and analytical results of the sodium heat pipe fatigue test

    Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    Get PDF
    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources

    Functional correlates of optic flow motion processing in Parkinson’s disease

    Get PDF
    The visual input created by the relative motion between an individual and the environment, also called optic flow, influences the sense of self-motion, postural orientation, veering of gait, and visuospatial cognition. An optic flow network comprising visual motion areas V6, V3A, and MT+, as well as visuo-vestibular areas including posterior insula vestibular cortex (PIVC) and cingulate sulcus visual area (CSv), has been described as uniquely selective for parsing egomotion depth cues in humans. Individuals with Parkinson’s disease (PD) have known behavioral deficits in optic flow perception and visuospatial cognition compared to age- and education-matched control adults (MC). The present study used functional magnetic resonance imaging (fMRI) to investigate neural correlates related to impaired optic flow perception in PD. We conducted fMRI on 40 non-demented participants (23 PD and 17 MC) during passive viewing of simulated optic flow motion and random motion. We hypothesized that compared to the MC group, PD participants would show abnormal neural activity in regions comprising this optic flow network. MC participants showed robust activation across all regions in the optic flow network, consistent with studies in young adults, suggesting intact optic flow perception at the neural level in healthy aging. PD participants showed diminished activity compared to MC particularly within visual motion area MT+ and the visuo-vestibular region CSv. Further, activation in visuo-vestibular region CSv was associated with disease severity. These findings suggest that behavioral reports of impaired optic flow perception and visuospatial performance may be a result of impaired neural processing within visual motion and visuo-vestibular regions in PD.Published versio

    Ice Caps and Ice Belts: The Effects of Obliquity on Ice−Albedo Feedback

    Get PDF
    Planetary obliquity determines the meridional distribution of the annual mean insolation. For obliquity exceeding 55°, the weakest insolation occurs at the equator. Stable partial snow and ice cover on such a planet would be in the form of a belt about the equator rather than polar caps. An analytical model of planetary climate is used to investigate the stability of ice caps and ice belts over the widest possible range of parameters. The model is a non-dimensional diffusive Energy Balance Model, representing insolation, heat transport, and ice-albedo feedback on a spherical planet. A complete analytical solution for any obliquity is given and validated against numerical solutions of a seasonal model in the "deep-water" regime of weak seasonal ice line migration. Multiple equilibria and unstable transitions between climate states (ice-free, Snowball, or ice cap/belt) are found over wide swaths of parameter space, including a "Large Ice-Belt Instability" and "Small Ice-Belt Instability" at high obliquity. The Snowball catastrophe is avoided at weak radiative forcing in two different scenarios: weak albedo feedback and inefficient heat transport (favoring stable partial ice cover), or efficient transport at high obliquity (favoring ice-free conditions). From speculative assumptions about distributions of planetary parameters, three-fourths to four-fifths of all planets with stable partial ice cover should be in the form of Earth-like polar caps

    Cooperatively breeding cottontop tamarins (Saguinus oedipus) do not donate rewards to their long-term mates

    No full text
    This study tested the hypothesis that cooperative breeding facilitates the emergence of prosocial behavior by presenting cottontop tamarins (Saguinus oedipus) with the option to provide food rewards to pair-bonded mates. In Experiment 1, tamarins could provide rewards to mates at no additional cost while obtaining rewards for themselves. Contrary to the hypothesis, tamarins did not demonstrate a preference to donate rewards, behaving similar to chimpanzees in previous studies. In Experiment 2, the authors eliminated rewards for the donor for a stricter test of prosocial behavior, while reducing separation distress and food preoccupation. Again, the authors found no evidence for a donation preference. Furthermore, tamarins were significantly less likely to deliver rewards to mates when the mate displayed interest in the reward. The results of this study contrast with those recently reported for cooperatively breeding common marmosets, and indicate that prosocial preferences in a food donation task do not emerge in all cooperative breeders. In previous studies, cottontop tamarins have cooperated and reciprocated to obtain food rewards; the current findings sharpen understanding of the boundaries of cottontop tamarins’ food-provisioning behavior

    Galactic Anisotropy as Signature of ``Top-Down'' Mechanisms of Ultra-High Energy Cosmic Rays

    Full text link
    We show that ``top-down'' mechanisms of Ultra-High Energy Cosmic Rays which involve heavy relic particle-like objects predict Galactic anisotropy of highest energy cosmic rays at the level of minimum ∼20\sim 20%. This anisotropy is large enough to be either observed or ruled out in the next generation of experiments.Comment: 8 pages, 1 figure, LaTeX. Final version appeared in Pisma Zh. Eksp. Teor. Fi

    On CP-Odd Effects in K_L \to 2\pi and K^{\pm} \to \pi^{\pm} \pi^{\pm} \pi^{\mp} Decays Generated by Direct CP Violation

    Full text link
    The amplitudes of the K^{\pm} \to 3\pi and K \to 2\pi decays are expressed in terms of different combinations of one and the same set of CP-conserving and CP-odd parameters. Extracting the magnitudes of these parameters from the data on K \to 2\pi decays, we estimate an expected CP-odd difference between the values of the slope parameters g^+ and g^- of the energy distributions of "odd" pions in K^+ \to \pi^+\pi^+\pi^- and K^- \to \pi^-\pi^-\pi^+ decays.Comment: 12 pages, no figure
    • …
    corecore