117 research outputs found
Thermally-Stimulated Current Investigation of Dopant-Related D- and A+ Trap Centers in Germanium for Cryogenic Detector Applications
International audienceThermally-stimulated current measurements provide a sensitive tool to char-acterize carrier traps in germanium detectors for dark matter search. Using this technique at cryogenic temperatures, very shallow traps have been detected with binding energies of a fraction of a meV, associated with the dopant species in the D-(A+) charge states. A positive identification of these traps is achieved through an analysis of the field dependence of the carrier emission rates, which demonstrates a potential well for the trapped carriers in the form of a polarization well in r-4, consistent with Lax's model for carrier trapping by a neutral center. The density of these traps is assessed, and implications for the space-charge cancellation procedure in cryogenic Ge detectors are discussed
Adsorbate-induced surface stress, surface strain and surface reconstruction : S on Cu(100) and Ni(100)
Density functional theory (DFT) calculations have been applied to investigate the known difference in behaviour of S adsorption on Cu(100) and Ni(100). Both surfaces form a 0.25 ML (2 × 2) adsorption phase, but while at higher coverage a 0.5 ML c(2 × 2) phase forms on Ni(100), on Cu(100) only a reconstructed 0.47 ML (√17 × √17)R14° structure occurs. Calculations of the energy, structure, and surface stress of (2 × 2) and c(2 × 2) phases on both substrates show there is an energy advantage on both surfaces to form the higher coverage phase, but that both surfaces show local surface strain around the S atoms in the (2 × 2) phase, a phenomenon previously investigated only on Cu(100). More than forty different structural models of the Cu(100)(√17 × √17)R14°-S phase have been investigated. The pseudo-(100)c(2 × 2) structure previously proposed, containing 16 Cu adatoms per unit mesh in the reconstructed layer, is found to be less energetically favourable than many other possible structures, even after taking account of local structural relaxations. Significantly more favourable is a structure with 12 Cu adatoms per (√17 × √17)R14° unit mesh, previously proposed on the basis of scanning tunnelling microscopy (STM), and found to yield simulated STM images in good agreement with experiment. This model has all S atoms in local 4-fold coordinated hollows relative to the Cu atoms below, half being located above Cu adatoms with the remainder lying above the underlying outermost substrate layer. However, an alternative model with only 4 Cu adatoms and with half the S atoms at 3-fold coordinated sites on the periphery of the Cu adatom cluster, has an even lower energy and gives simulated STM images in excellent agreement with experiment
Collisionless Shock Acceleration of protons in a plasma slab produced in a gas jet by the collision of two laser-driven hydrodynamic shockwaves
We recently proposed a new technique of plasma tailoring by laser-driven
hydrodynamic shockwaves generated on both sides of a gas jet [J.-R. Marqu\`es
et al., Phys. Plasmas 28, 023103 (2021)]. In the continuation of this numerical
work, we studied experimentally the influence of the tailoring on proton
acceleration driven by a high-intensity picosecond-laser, in three cases:
without tailoring, by tailoring only the entrance side of the ps-laser, or both
sides of the gas jet. Without tailoring the acceleration is transverse to the
laser axis, with a low-energy exponential spectrum, produced by Coulomb
explosion. When the front side of the gas jet is tailored, a forward
acceleration appears, that is significantly enhanced when both the front and
back sides of the plasma are tailored. This forward acceleration produces
higher energy protons, with a peaked spectrum, and is in good agreement with
the mechanism of Collisionless Shock Acceleration (CSA). The spatio-temporal
evolution of the plasma profile was characterized by optical shadowgraphy of a
probe beam. The refraction and absorption of this beam was simulated by
post-processing 3D hydrodynamic simulations of the plasma tailoring. Comparison
with the experimental results allowed to estimate the thickness and
near-critical density of the plasma slab produced by tailoring both sides of
the gas jet. These parameters are in good agreement with those required for
CSA
Design, setup and routine operation of a water treatment system for the monitoring of low activities of tritium in water
In the TRITIUM project, an on-site monitoring system is being developed to measure tritium (H) levels in water near nuclear power plants. The quite low-energy betas emitted by H have a very short average path in water (5 μm as shown by simulations for 18 keV electrons). This path would be further reduced by impurities present in the water, resulting in a significant reduction of the detection efficiency. Therefore, one of the essential requirements of the project is the elimination of these impurities through a filtration process and the removal of salts in solution. This paper describes a water treatment system developed for the project that meets the following requirements: the water produced should be of near-pure water quality according to ISO 3696 grade 3 standard (conductivity < 10 μS/cm); the system should operate autonomously and be remotely monitored.This work was supported by the INTERREG-SUDOE EEC program
through the project TRITIUM e SOE1/P4/E0214 entitled: “Dise~no,
construccition y puesta a punto de estaciones automaticas para el
monitoraje en tiempo real de bajos niveles radiactivos de tritio en
aguas
Final results of the EDELWEISS-II WIMP search using a 4-kg array of cryogenic germanium detectors with interleaved electrodes
The EDELWEISS-II collaboration has completed a direct search for WIMP dark
matter with an array of ten 400-g cryogenic germanium detectors in operation at
the Laboratoire Souterrain de Modane. The combined use of thermal phonon
sensors and charge collection electrodes with an interleaved geometry enables
the efficient rejection of gamma-induced radioactivity as well as near-surface
interactions. A total effective exposure of 384 kg.d has been achieved, mostly
coming from fourteen months of continuous operation. Five nuclear recoil
candidates are observed above 20 keV, while the estimated background is 3.0
events. The result is interpreted in terms of limits on the cross-section of
spin-independent interactions of WIMPs and nucleons. A cross-section of
4.4x10^-8 pb is excluded at 90%CL for a WIMP mass of 85 GeV. New constraints
are also set on models where the WIMP-nucleon scattering is inelastic.Comment: 23 pages, 5 figures; matches published versio
A search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors
We report on a search for low-energy (E < 20 keV) WIMP-induced nuclear
recoils using data collected in 2009 - 2010 by EDELWEISS from four germanium
detectors equipped with thermal sensors and an electrode design (ID) which
allows to efficiently reject several sources of background. The data indicate
no evidence for an exponential distribution of low-energy nuclear recoils that
could be attributed to WIMP elastic scattering after an exposure of 113 kg.d.
For WIMPs of mass 10 GeV, the observation of one event in the WIMP search
region results in a 90% CL limit of 1.0x10^-5 pb on the spin-independent
WIMP-nucleon scattering cross-section, which constrains the parameter space
associated with the findings reported by the CoGeNT, DAMA and CRESST
experiments.Comment: PRD rapid communication accepte
Muon-induced background in the EDELWEISS dark matter search
A dedicated analysis of the muon-induced background in the EDELWEISS dark
matter search has been performed on a data set acquired in 2009 and 2010. The
total muon flux underground in the Laboratoire Souterrain de Modane (LSM) was
measured to be \,muons/m/d. The
modular design of the muon-veto system allows the reconstruction of the muon
trajectory and hence the determination of the angular dependent muon flux in
LSM. The results are in good agreement with both MC simulations and earlier
measurements. Synchronization of the muon-veto system with the phonon and
ionization signals of the Ge detector array allowed identification of
muon-induced events. Rates for all muon-induced events and of WIMP-like events were extracted. After
vetoing, the remaining rate of accepted muon-induced neutrons in the
EDELWEISS-II dark matter search was determined to be at 90%\,C.L. Based on
these results, the muon-induced background expectation for an anticipated
exposure of 3000\,\kgd\ for EDELWEISS-3 is
events.Comment: 21 pages, 16 figures, Accepted for publication in Astropart. Phy
Background studies for the EDELWEISS dark matter experiment
The EDELWEISS-II collaboration has completed a direct search for WIMP dark
matter using cryogenic Ge detectors (400 g each) and 384 kgdays of
effective exposure. A cross-section of pb is excluded at
90% C.L. for a WIMP mass of 85 GeV. The next phase, EDELWEISS-III, aims to
probe spin-independent WIMP-nucleon cross-sections down to a few
pb. We present here the study of gamma and neutron background
coming from radioactive decays in the set-up and shielding materials. We have
carried out Monte Carlo simulations for the completed EDELWEISS-II setup with
GEANT4 and normalised the expected background rates to the measured
radioactivity levels (or their upper limits) of all materials and components.
The expected gamma-ray event rate in EDELWEISS-II at 20-200 keV agrees with the
observed rate of 82 events/kg/day within the uncertainties in the measured
concentrations. The calculated neutron rate from radioactivity of 1.0-3.1
events (90% C.L.) at 20-200 keV in the EDELWEISS-II data together with the
expected upper limit on the misidentified gamma-ray events (), surface
betas (), and muon-induced neutrons (), do not contradict 5
observed events in nuclear recoil band. We have then extended the simulation
framework to the EDELWEISS-III configuration with 800 g crystals, better
material purity and additional neutron shielding inside the cryostat. The
gamma-ray and neutron backgrounds in 24 kg fiducial mass of EDELWEISS-III have
been calculated as 14-44 events/kg/day and 0.7-1.4 events per year,
respectively. The results of the background studies performed in the present
work have helped to select better purity components and improve shielding in
EDELWEISS-III to further reduce the expected rate of background events in the
next phase of the experiment.Comment: 15 pages, 9 figures, to be published in Astroparticle Physic
- …