921 research outputs found

    Scattering of massive Dirac fields on the Schwarzschild black hole spacetime

    Full text link
    With a generally covariant equation of Dirac fields outside a black hole, we develop a scattering theory for massive Dirac fields. The existence of modified wave operators at infinity is shown by implementing a time-dependent logarithmic phase shift from the free dynamics to offset a long-range mass term. The phase shift we obtain is a matrix operator due to the existence of both positive and negative energy wave components.Comment: LaTex, 17 page

    On the Flux-Across-Surfaces Theorem

    Get PDF
    The quantum probability flux of a particle integrated over time and a distant surface gives the probability for the particle crossing that surface at some time. We prove the free Flux-Across-Surfaces Theorem, which was conjectured by Combes, Newton and Shtokhamer, and which relates the integrated quantum flux to the usual quantum mechanical formula for the cross section. The integrated quantum flux is equal to the probability of outward crossings of surfaces by Bohmian trajectories in the scattering regime.Comment: 13 pages, latex, 1 figure, very minor revisions, to appear in Letters in Mathematical Physics, Vol. 38, Nr.

    Matrix exponential-based closures for the turbulent subgrid-scale stress tensor

    Get PDF
    Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy

    Ionization of Atoms by Intense Laser Pulses

    Full text link
    The process of ionization of a hydrogen atom by a short infrared laser pulse is studied in the regime of very large pulse intensity, in the dipole approximation. Let AA denote the integral of the electric field of the pulse over time at the location of the atomic nucleus. It is shown that, in the limit where A|A| \to \infty, the ionization probability approaches unity and the electron is ejected into a cone opening in the direction of A-A and of arbitrarily small opening angle. Asymptotics of various physical quantities in A1|A|^{-1} is studied carefully. Our results are in qualitative agreement with experimental data reported in \cite{1,2}.Comment: 27 pages, 1 figure

    H\"older continuity of the IDS for matrix-valued Anderson models

    Full text link
    We study a class of continuous matrix-valued Anderson models acting on L^{2}(\R^{d})\otimes \C^{N}. We prove the existence of their Integrated Density of States for any d1d\geq 1 and N1N\geq 1. Then for d=1d=1 and for arbitrary NN, we prove the H\"older continuity of the Integrated Density of States under some assumption on the group GμEG_{\mu_{E}} generated by the transfer matrices associated to our models. This regularity result is based upon the analoguous regularity of the Lyapounov exponents associated to our model, and a new Thouless formula which relates the sum of the positive Lyapounov exponents to the Integrated Density of States. In the final section, we present an example of matrix-valued Anderson model for which we have already proved, in a previous article, that the assumption on the group GμEG_{\mu_{E}} is verified. Therefore the general results developed here can be applied to this model

    Scattering into Cones and Flux across Surfaces in Quantum Mechanics: a Pathwise Probabilistic Approach

    Full text link
    We show how the scattering-into-cones and flux-across-surfaces theorems in Quantum Mechanics have very intuitive pathwise probabilistic versions based on some results by Carlen about large time behaviour of paths of Nelson diffusions. The quantum mechanical results can be then recovered by taking expectations in our pathwise statements.Comment: To appear in Journal of Mathematical Physic

    Achieving integrated care for older people: shuffling the deckchairs or making the system watertight for the future?

    Get PDF
    ePublished: 3 January 2018Integrated care has been recognised as a key initiative to resolve the issues surrounding care for older people living with multi-morbidity. Multiple strategies and policies have been implemented to increase coordination of care globally however, evidence of effectiveness remains mixed. The reasons for this are complex and multi-factorial, yet many strategies deal with parts of the problem rather than taking a whole systems view with the older person clearly at the centre. This approach of fixing parts of the system may be akin to shuffling the deckchairs on the Titanic, rather than dealing with the fundamental reasons why the ship is sinking. Attempts to make the ship more watertight need to be firmly centred on the older person, pay close attention to implementation and embrace approaches that promote collaborative working between all the stakeholders involved.Gill Harvey, Joanne Dollard, Amy Marshall, Manasi Murthy Mittint

    A quasi classical approach to electron impact ionization

    Get PDF
    A quasi classical approximation to quantum mechanical scattering in the Moeller formalism is developed. While keeping the numerical advantage of a standard Classical--Trajectory--Monte--Carlo calculation, our approach is no longer restricted to use stationary initial distributions. This allows one to improve the results by using better suited initial phase space distributions than the microcanonical one and to gain insight into the collision mechanism by studying the influence of different initial distributions on the cross section. A comprehensive account of results for single, double and triple differential cross sections for atomic hydrogen will be given, in comparison with experiment and other theories.Comment: 21 pages, 10 figures, submitted to J Phys
    corecore