33 research outputs found
Ringer's lactate improves liver recovery in a murine model of acetaminophen toxicity
<p>Abstract</p> <p>Background</p> <p>Acetaminophen (APAP) overdose induces massive hepatocyte necrosis. Liver regeneration is a vital process for survival after a toxic insult. Since hepatocytes are mostly in a quiescent state (G<sub>0</sub>), the regeneration process requires the priming of hepatocytes by cytokines such as TNF-Ξ± and IL-6. Ringer's lactate solution (RLS) has been shown to increase serum TNF-Ξ± and IL-6 in patients and experimental animals; in addition, RLS also provides lactate, which can be used as an alternative metabolic fuel to meet the higher energy demand by liver regeneration. Therefore, we tested whether RLS therapy improves liver recovery after APAP overdose.</p> <p>Methods</p> <p>C57BL/6 male mice were intraperitoneally injected with a single dose of APAP (300 mg/kg dissolved in 1 mL sterile saline). Following 2 hrs of APAP challenge, the mice were given 1 mL RLS or Saline treatment every 12 hours for a total of 72 hours.</p> <p>Results</p> <p>72 hrs after APAP challenge, compared to saline-treated group, RLS treatment significantly lowered serum transaminases (ALT/AST) and improved liver recovery seen in histopathology. This beneficial effect was associated with increased hepatic tissue TNF-Ξ± concentration, enhanced hepatic NF-ΞΊB DNA binding and increased expression of cell cycle protein cyclin D1, three important factors in liver regeneration.</p> <p>Conclusion</p> <p>RLS improves liver recovery from APAP hepatotoxicity.</p
Ibudilast, a Pharmacologic Phosphodiesterase Inhibitor, Prevents Human Immunodeficiency Virus-1 Tat-Mediated Activation of Microglial Cells
Human Immunodeficiency Virus-1 (HIV-1)-associated neurocognitive disorders (HAND) occur, in part, due to the inflammatory response to viral proteins, such as the HIV-1 transactivator of transcription (Tat), in the central nervous system (CNS). Given the need for novel adjunctive therapies for HAND, we hypothesized that ibudilast would inhibit Tat-induced excess production of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNFΞ±) in microglial cells. Ibudilast is a non-selective cyclic AMP phosphodiesterase inhibitor that has recently shown promise as a treatment for neuropathic pain via its ability to attenuate glial cell activation. Accordingly, here we demonstrate that pre-treatment of both human and mouse microglial cells with increasing doses of ibudilast inhibited Tat-induced synthesis of TNFΞ± by microglial cells in a manner dependent on serine/threonine protein phosphatase activity. Ibudilast had no effect on Tat-induced p38 MAP kinase activation, and blockade of adenosine A2A receptor activation did not reverse ibudilast's inhibition of Tat-induced TNFΞ± production. Interestingly, ibudilast reduced Tat-mediated transcription of TNFΞ±, via modulation of nuclear factor-kappa B (NF-ΞΊB) signaling, as shown by transcriptional activity of NF-ΞΊB and analysis of inhibitor of kappa B alpha (IΞΊBΞ±) stability. Together, our findings shed light on the mechanism of ibudilast's inhibition of Tat-induced TNFΞ± production in microglial cells and may implicate ibudilast as a potential novel adjunctive therapy for the management of HAND
Phosphodiesterase-4 Inhibition Alters Gene Expression and Improves Isoniazid β Mediated Clearance of Mycobacterium tuberculosis in Rabbit Lungs
Tuberculosis (TB) treatment is hampered by the long duration of antibiotic therapy required to achieve cure. This indolent response has been partly attributed to the ability of subpopulations of less metabolically active Mycobacterium tuberculosis (Mtb) to withstand killing by current anti-TB drugs. We have used immune modulation with a phosphodiesterase-4 (PDE4) inhibitor, CC-3052, that reduces tumor necrosis factor alpha (TNF-Ξ±) production by increasing intracellular cAMP in macrophages, to examine the crosstalk between host and pathogen in rabbits with pulmonary TB during treatment with isoniazid (INH). Based on DNA microarray, changes in host gene expression during CC-3052 treatment of Mtb infected rabbits support a link between PDE4 inhibition and specific down-regulation of the innate immune response. The overall pattern of host gene expression in the lungs of infected rabbits treated with CC-3052, compared to untreated rabbits, was similar to that described in vitro in resting Mtb infected macrophages, suggesting suboptimal macrophage activation. These alterations in host immunity were associated with corresponding down-regulation of a number of Mtb genes that have been associated with a metabolic shift towards dormancy. Moreover, treatment with CC-3052 and INH resulted in reduced expression of those genes associated with the bacterial response to INH. Importantly, CC-3052 treatment of infected rabbits was associated with reduced ability of Mtb to withstand INH killing, shown by improved bacillary clearance, from the lungs of co-treated animals compared to rabbits treated with INH alone. The results of our study suggest that changes in Mtb gene expression, in response to changes in the host immune response, can alter the responsiveness of the bacteria to antimicrobial agents. These findings provide a basis for exploring the potential use of adjunctive immune modulation with PDE4 inhibitors to enhance the efficacy of existing anti-TB treatment
Hybrid Particle-Field Model for Conformational Dynamics of Peptide Chains
We
propose the first model of a polypeptide chain based on a hybrid-particle
field approach. The intramolecular potential is built on a two-bead
coarse grain mapping for each amino acid. We employ a combined potential
for the bending and the torsional degrees of freedom that ensures
the stabilization of secondary structure elements in the conformational
space of the polypeptide. The electrostatic dipoles associated with
the peptide bonds of the main chain are reconstructed by a topological
procedure. The intermolecular interactions comprising both the solute
and the explicit solvent are treated by a density functional-based
mean-field potential. Molecular dynamics simulations on a series of
test systems show how the model here introduced is able to capture
all the main features of polypeptides. In particular, homopolymers
of different lengths yield a complex folding phase diagram, covering
from the collapsed to swollen state. Moreover, simulations on models
of a four-helix bundle and of an alpha + beta peptide evidence how
the collapse of the hydrophobic core drives the appearance of both
folded motifs and the stabilization of tertiary or quaternary assemblies.
Finally, the polypeptide model is able to structurally respond to
the environmental changes caused by the presence of a lipid bilayer
Burn-Induced Gut Barrier Injury is Attenuated By Phosphodiesterase Inhibition
Loss of intestinal barrier function after burn injury allows movement of intraluminal contents across the mucosa, which can lead to the development of distant organ injury and multiple organ failure. Tight junction function is highly regulated by membrane-associated proteins including occludin and zonula occludens protein 1 (ZO-1), which can be modulated by systemic inflammation. We hypothesized that (1) burn injury leads to gut barrier injury, and (2) phosphodiesterase inhibition will attenuate these burn-induced changes. Male balb/c mice undergoing a 30% steam burn were randomized to resuscitation with normal saline or normal saline + pentoxifylline (PTX; 12.5 mg/kg). Intestinal injury was assessed by histological diagnosis and TNF-Ξ± levels using enzyme-linked immunosorbent assay. Intestinal permeability was assessed by measuring the plasma concentration of fluorescein isothiocyanateβdextran after intraluminal injection in the distal ileum. Occludin and ZO-1 levels were analyzed by immunoblotting and immunohistochemistry. Thirty percent total body surface area (TBSA) burn results in a significant increase in intestinal permeability. Treatment with PTX after burn attenuates intestinal permeability to sham levels. Burn injury resulted in a marked decrease in the levels of tight junction proteins occludin and ZO-1 at 6 and 24 h. The use of PTX after burn significantly decreases the breakdown of occludin and ZO-1. Pentoxifylline also attenuates the burn-induced increase in plasma and intestinal TNF-Ξ±. Confocal microscopy demonstrates that PTX attenuates the burn-induced reorganization of occludin and ZO-1 away from the tight junction. Pentoxifylline attenuates burn-induced intestinal permeability and decreases the breakdown and reorganization of intestinal occludin and ZO-1. Therefore, phosphodiesterase inhibition may be a useful adjunct strategy in the attenuation of burn-induced gut barrier injury