1,458 research outputs found
Congratulatory certificate from St. John\u27s College to University of Mississippi Chancellor R. Gerald Turner
Certificate of congratulations from St. John\u27s College to the University of Mississippi upon the inauguration of Chancellor R. Gerald Turnerhttps://egrove.olemiss.edu/inauguration/1015/thumbnail.jp
Thermodynamic modelling of synthetic communities predicts minimum free energy requirements for sulfate reduction and methanogenesis
Microbial communities are complex dynamical systems harbouring many species interacting together to implement higher-level functions. Among these higher-level functions, conversion of organic matter into simpler building blocks by microbial communities underpins biogeochemical cycles and animal and plant nutrition, and is exploited in biotechnology. A prerequisite to predicting the dynamics and stability of community-mediated metabolic conversions is the development and calibration of appropriate mathematical models. Here, we present a generic, extendable thermodynamic model for community dynamics and calibrate a key parameter of this thermodynamic model, the minimum energy requirement associated with growth-supporting metabolic pathways, using experimental population dynamics data from synthetic communities composed of a sulfate reducer and two methanogens. Our findings show that accounting for thermodynamics is necessary in capturing the experimental population dynamics of these synthetic communities that feature relevant species using low energy growth pathways. Furthermore, they provide the first estimates for minimum energy requirements of methanogenesis (in the range of â30 kJ molâ1) and elaborate on previous estimates of lactate fermentation by sulfate reducers (in the range of â30 to â17 kJ molâ1 depending on the culture conditions). The open-source nature of the developed model and demonstration of its use for estimating a key thermodynamic parameter should facilitate further thermodynamic modelling of microbial communities
Shot noise in carbon nanotube based Fabry-Perot interferometers
We report on shot noise measurements in carbon nanotube based Fabry-Perot
electronic interferometers. As a consequence of quantum interferences, the
noise power spectral density oscillates as a function of the voltage applied to
the gate electrode. The quantum shot noise theory accounts for the data
quantitatively. It allows to confirm the existence of two nearly degenerate
orbitals. At resonance, the transmission of the nanotube approaches unity, and
the nanotube becomes noiseless, as observed in quantum point contacts. In this
weak backscattering regime, the dependence of the noise on the backscattering
current is found weaker than expected, pointing either to electron-electron
interactions or to weak decoherence
New implementation of stability-based transition model by means of transport equations
International audienceA new natural laminar-turbulent transition model compatible with Computation Fluid Dynamics is presented. This model accounts for longitudinal transition mechanisms (i.e. Tollmien-Schlichting induced transition) thanks to systematic stability computation on similar boundary profiles from Mach zero to four both on adiabatic and isothermal wall. The model embeds as well the so-called âC1-criterionâ for transverse transition mechanisms (i.e. cross-flow wavesinduced transition). The transition model is written under transport equations formalism and has been implemented in the solver elsA (ONERA-Airbus-Safran property). Comparisons are performed on two-dimensional and three-dimensional configurations against transition database approach
Conserved spin and orbital phase along carbon nanotubes connected with multiple ferromagnetic contacts
We report on spin dependent transport measurements in carbon nanotubes based
multi-terminal circuits. We observe a gate-controlled spin signal in non-local
voltages and an anomalous conductance spin signal, which reveal that both the
spin and the orbital phase can be conserved along carbon nanotubes with
multiple ferromagnetic contacts. This paves the way for spintronics devices
exploiting both these quantum mechanical degrees of freedom on the same
footing.Comment: 8 pages - minor differences with published versio
Cross-linguistic study of vocal pathology: perceptual features of spasmodic dysphonia in French-speaking subjects
Clinical characterisation of Spasmodic Dysphonia of the adductor type (SD) in French speakers by Klap and colleagues (1993) appears to differ from that of SD in English. This perceptual analysis aims to describe the phonetic features of French SD. A video of 6 French speakers with SD supplied by Klap and colleagues was analysed for frequency of phonatory breaks, pitch breaks, harshness, creak, breathiness and falsetto voice, rate of production, and quantity of speech output. In contrast to English SD, the French speaking SD patients demonstrated no evidence pitch breaks, but phonatory breaks, harshness and breathiness were prominent features. This verifies the French authorsâ (1993) clinical description. These findings suggest that phonetic properties of a specific language may affect the manifestation of pathology in neurogenic voice disorders
Chemical and vibratory signals used in alarm communication in the termite Reticulitermes flavipes (Rhinotermitidae)
Termites have evolved diverse defence strategies to protect themselves against predators, including a complex alarm communication system based on vibroacoustic and/or chemical signals. In reaction to alarm signals, workers and other vulnerable castes flee away while soldiers, the specialized colony defenders, actively move toward the alarm source. In this study, we investigated the nature of alarm communication in the pest Reticulitermes flavipes. We found that workers and soldiers of R. flavipes respond to various danger stimuli using both vibroacoustic and chemical alarm signals. Among the danger stimuli, the blow of air triggered the strongest response, followed by crushed soldier head and light flash. The crushed soldier heads, which implied the alarm pheromone release, had the longest-lasting effect on the group behaviour, while the responses to other stimuli decreased quickly. We also found evidence of a positive feedback, as the release of alarm pheromones increased the vibratory communication among workers and soldiers. Our study demonstrates that alarm modalities are differentially expressed between castes, and that the response varies according to the nature of stimuli
- âŠ