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Abstract 

Termites have evolved diverse defence strategies to protect themselves against predators, 

including a complex alarm communication system based on vibroacoustic and/or chemical 

signals. In reaction to alarm signals, workers and other vulnerable castes flee away while 

soldiers, the specialized colony defenders, actively move toward the alarm source. In this study, 

we investigated the nature of alarm communication in the pest Reticulitermes flavipes. We 

found that workers and soldiers of R. flavipes respond to various danger stimuli by using both 

vibroacoustic and chemical alarm signals. Among the danger stimuli, the blow of air triggered 

the strongest response, followed by crushed soldier head and light flash. The crushed soldier 

heads, which implied the alarm pheromone release, had the longest-lasting effect on the group 

behaviour, while the responses to other stimuli decreased quickly. We also found evidence of 

a positive feedback, as the release of alarm pheromones increased the vibratory communication 

among workers and soldiers. Our study demonstrates that alarm modalities are differentially 

expressed between castes, and that the response varies according to the nature of stimuli.  
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1. Introduction 

Alarm communication is common in social animals, and it increases rates of survival (Wyatt, 

2003; Hunt and Richard 2013). Almost all social insects use alarm communication to coordinate 

the defensive activities of the entire colony (Leonhardt et al. 2016). These alarm signals are 

shared through different communication channels, with vibratory and pheromonal 

communication being the most common (Greenfield 2002; Cocroft and Rodriguez 2005). In 

termites, as well as their sister group, the subsocial roaches Cryptocercus (Seelinger and 

Seelinger 1983; Connétable et al. 1999; Röhrig et al. 1999; Reinhard and Clément 2002; Hager 

and Kirchner 2013; Delattre et al. 2015), vibratory and/or chemical signals are produced by 

disturbed colony members and induce the retreat of workers and other vulnerable castes while 

attracting soldiers (Reinhard and Clément 2002; Šobotník et al. 2008a, 2010). These 

mechanisms are essential for termite colony defence, and greatly contribute to their ecological 

success. For example, tamandua anteaters are specialized predators of Nasutitermes, which they 

find in wood pieces, but they are unable to feed on this termite directly in the nest where the 

soldier proportion is higher (Lubin and Montgomery 1981). 

Many termite species produce substrate-borne vibrations by hitting their heads and/or 

abdomens on the substrate (Connétable et al. 1999; Röhrig et al. 1999; Hager and Kirchner 

2013). All colony members are able to detect vibrations with their subgenual organs, specialized 

chordotonal vibroreceptors, located on the leg tibiae (Howse 1962, 1965a; Chapman 1998). 

Such unique alarm communication mechanism may have evolved only once in the common 

ancestor of termites and Cryptocercus (Seelinger and Seelinger 1983), probably after its diet 

switched from loose substrates to wood, a material through which vibratory signals easily 

spread. The vibratory alarm signals are generated by using several types of oscillatory 

movements in termites. In this paper, we will follow the terminology introduced by Hill (2014), 

who recognized two categories of vibrational mechanisms: (1) drumming, commonly used in 

termites to produce substrate-borne vibrations; (2) tremulation, a body movement performed 

without any hit on the substrate, used to propagate the alarm selectively to calm nestmates 

(Kettler and Leuthold 1995; Šobotník et al. 2008b).  

Another mean of alarm signalling is the chemical channel. Social insects evolved a rich set of 

exocrine glands (Billen and Šobotník 2015) producing a wide range of infochemicals. In 

termites, alarm pheromones are produced either by the frontal or labial glands, which are the 

defensive glands of soldiers (Šobotník et al. 2008a, 2010; Delattre et al. 2015). Alarm 



	

	 4	

compounds are mostly mono- or sesqui-terpenes (see Šobotník et al. 2010 for a review), except 

in Mastotermes darwiniensis, that uses benzoquinone (Delattre et al. 2015).  

In certain termite species, the efficiency of alarm signalling is enhanced by positive feedback, 

a mechanism implying amplification of the signal by newly alerted specimens (Vrkoč et al. 

1978; Roisin et al. 1990; Röhrig et al. 1999; Hager and Kirchner 2013; Cristaldo et al. 2015; 

Delattre et al. 2015). Vibratory positive feedback has been demonstrated in Mastotermes 

darwiniensis (Delattre et al. 2015), in several Macrotermitinae (Termitidae; Connétable et al. 

1999; Hager and Kirchner 2013; Röhrig et al. 1999), and in Constrictotermes cyphergaster 

(Termitidae: Nasutitermitinae; Cristaldo et al. 2015). Chemical positive feedback, relies upon 

the alarm pheromone present in soldier defensive secretion and is known in Mastotermes 

darwiniensis (Delattre et al. 2015) and in several Nasutitermes species (Termitidae: 

Nasutitermitinae) (Roisin et al. 1990; Vrkoč et al. 1978).  

While the nature of vibratory or chemical alarm signals is well-known and has been the focus 

of many studies, the alarm transmission mechanisms have seldom been investigated. Cristaldo 

et al. (2015) demonstrated that individuals react to alarm pheromone stimulation by vibratory 

alarm signalling in C. cyphergaster, and Delattre et al. (2015) showed that artificial vibratory 

alarm signals trigger the release of the alarm pheromones in M. darwiniensis. In this study, we 

carried out a careful examination of alarm communication mechanisms in Reticulitermes 

flavipes (Kollar, 1837) (Rhinotermitidae), including a vibrational and chemical analysis of this 

behaviour. Since only the basal termites and the most derived termites have been studied, this 

study aims to improve our understanding of the evolution of alarm communication in termites. 

Reticulitermes is a temperate genus that includes many pest species responsible for billions of 

dollars of damage annually worldwide (Su and Scheffrahn 2000). We characterized the 

vibratory and chemical communication in workers and soldiers, and determined their responses 

to particular danger stimuli, including the alarm pheromones of their colony mates.  

 

2. Materials & Methods 

2.1. Insect material 

All the experiments were carried out on one colony of Reticulitermes flavipes collected in Île 

d'Oléron (France) in 1998, and kept in laboratory stable conditions (26°C, 90% relative 

humidity) since then. 
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2.2. Behavioural experiments 

All experiments were performed at 26°C under dimmed red light. We first conducted a 

behavioural experiment to assess how R. flavipes workers and soldiers react to various danger 

stimuli. To avoid any effect of social deprivation, we formed groups (N=12) of 38 workers and 

2 soldiers (natural caste ratio; see Haverty 1977) that were put in 85 mm Petri dishes lined with 

moist clean Whatman No. 1 filter paper. The groups were left to settle for at least two hours 

prior to testing, and between two tests. The stimuli set included: (i) light flash (three seconds, 

800 lux intensity, 5500 – 6000 K colour temperature), (ii) blow of air, delivered through a fine 

straw for three seconds, which mimics a breech into the colony, (iii) one crushed worker head 

and (iv) one crushed soldier head. Crushed heads were prepared by cutting termites at the level 

of the prothorax and the heads were crushed on filter paper using a small spatula, allowing the 

impregnation of the filter paper by the contents of the frontal gland (soldier frontal gland is 

known to produce alarm pheromone; Reinhard and Clément 2002). We recorded group activity 

without any stimulation as controls for experiments (i) and (ii). For experiments (iii) and (iv), 

the controls consisted in the insertion of a blank filter paper. Pieces of filter paper were carefully 

inserted into the Petri dish through a fine slit in the lid. Each stimulus was tested six times in 

random order and on randomly chosen groups (3 stimuli per group in random order). 

Behavioural reactions were recorded using a Canon EOS 6D combined with EF 100 mm f/2.8L 

Macro IS USM for three minutes before stimulation and six minutes after the stimulation. We 

chose to analyse the speed-of-motion of individuals, to assess their reaction to our stimuli. 

Speed-of-motion increases as workers flee the disturbance source, and soldiers gather next to it 

(Reinhard and Clément 2002; Šobotník et al. 2008a, 2010). We tracked two randomly chosen 

workers and both soldiers per group for each record. We estimated the group behaviour one 

minute before the stimulus introduction, and one and six minutes after (short-term and long-

term responses, respectively), using the Mouse-Tracer Software (see Šobotník et al. 2008a). 

We then computed the variation of speed-of-motion for all the stimuli using the difference 

between the mean speed before and after the introduction of the stimulus. This method allowed 

us to normalize the variance between the different termite groups. Variations in speed-of-

motion for all danger stimuli were compared to their respective controls.  

 

2.3. Chemical analyses 
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We carried out two experiments to identify the alarm compounds in workers and soldiers of R. 

flavipes. In the first experiment, 20 termites were cut at the level of the prothorax and the 

anterior parts were successively extracted with 60 µl and 40 µl of hexane. Both extractions took 

place over two successive nights at 4°C. Both extracts were merged and one termite equivalent 

was injected in a 6890N gas chromatograph (Agilent, Santa Clara, CA). The most abundant 

compounds were identified based on spectral characteristics and published records 

(summarized in Šobotník et al. 2010). In the second experiment, we crushed heads of five 

individuals of each caste in a 1.2 mL glass vial with a Pasteur pipette. The headspace extraction 

of volatiles was carried out using SPME fibre holder for manual sampling equipped with a fused 

silica fibre coated with 30 µm polydimethylsiloxane (Supelco, Bellefonte, USA). The analytes 

were desorbed at 220°C in a split/splitless injector of a 5975B quadrupole mass spectrometer 

coupled to a gas chromatograph. The separation was achieved on a DB-5ms capillary column 

(30 m × 0.25 mm, a film thickness of 0.25 µm, Agilent) at a constant flow mode (1 mL/min) 

with helium as a carrier gas. The column temperature was held at 40°C (1 min), gradually 

increased at 5°C/min to 200°C, then gradually increased at 15°C/min to 320°C, and held at 

320°C for 3 min. The temperatures of the transfer line, ion source and quadrupole were 280, 

230, and 150°C, respectively. The compounds were ionized at 70 eV electrons.  

 

2.4. Vibroacoustic experiments 

In order to decipher the vibratory component of R. flavipes behaviour, we formed ten new 

groups of termites, using the same ratio we used in our behavioural experiments. The aim of 

this experiment was to determine the interaction between a chemical stimulation and the 

vibratory component of alarm signalling in R. flavipes. We crushed one worker and one soldier 

head on different pieces of filter paper (following the same protocol as the behavioural 

experiment), and used another identical piece of blank filter paper for control. Due to 

methodological constraints and to avoid the absorption of the termite-produced vibrations, 

termite groups were placed into a 85 mm Petri dish without filter paper, and moisture was 

provided by a piece of wet cotton attached to the lid. The bottom of the Petri dish was heavily 

scratched to allow termites to walk. Our experiments were carried out in an anechoic room at 

the Czech Technical University in Prague under dimmed red light. All experiments took place 

on a table hung from the ceiling to avoid any perturbations from the experimenters (see 

Supplementary video SV1). All experiments were recorded using a SONY DCR-SR72 camera 
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in night-shot mode fixed above the experimental arena. These records were only used to link 

the behaviour of termite groups to recorded vibrations, and were not used for behavioural 

analyses.  

Vibratory communication was recorded using accelerometers (Brüel & Kjær type 4507 B 005) 

glued to the bottom of Petri dishes. We analysed the recorded vibratory signals using a Soft dB 

Tenor recorder (24 bits, sampling frequency 48 kHz) and Matlab software (R 2012a; see ESM 

1). Prior to each experiment, we recorded high-resolution videos of both, disturbed and 

undisturbed groups of termites, in order to decipher the repertoire of vibrations generated by R. 

flavipes workers and soldiers. We considered recorded frequencies below 15 Hz as low-

frequency vibrations, and frequencies above 15 Hz as high-frequency vibrations. These 

preliminary tests were also used to determine the optimal parameters of frequency filters used 

for post-processing of vibration records of R. flavipes groups in the described environment. 

This allowed us to reduce the background noise. 

In these experiments, because termite signals overlap, we were unable to analyse individual 

signals. Therefore, we computed the total amount of energy produced by group vibratory 

signals after each stimulation. This variable ER, was computed using the following equation: 
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in which TA is the evaluation period after disturbance (60 sec and 360 sec, respectively), TB is 

the evaluation period before disturbance (60 sec), and xf(t) is the filtered acceleration signal 

(bandpass filter 50-500 Hz) and is a function of time (t). 

2.5. Statistics 

We performed Kruskal-Wallis tests and two-by-two post hoc permutation tests (10,000 

permutations) for independent samples, and we carried out Friedman tests and two-by-two post 

hoc permutation tests (10,000 permutations) for paired samples. Bonferroni-Holm corrections 

(Holm 1979) were applied for multiple comparisons among groups. All statistical tests were 

performed with StatXact software (Cytel Studio, version 9.0.0, 2010). 
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3. Results 

3.1. Behavioural experiments 

All groups significantly reacted to all experimental stimuli. We found significant differences 

among stimulations for both soldiers and workers, both one and six minutes after stimulations 

(short-term vs. long-term responses respectively; Table 1). 

Workers were sensitive to the blow of air, the crushed soldier head (CSH) and light flash 

exposure, but not to the crushed worker head. Soldiers revealed similar responses, but were also 

sensitive to the crushed worker head (CWH) during the first minute after the stimulus 

introduction (Fig. 1, Fig. S1).  

 

3.2.Chemical analyses 

Analytical approaches revealed a set of monoterpenes present in soldier extracts and SPME, 

while no candidate compound was detected in workers, irrespectively of method used (Table 

2). Extracts of workers and soldiers also contained the cuticular hydrocarbons specific to R. 

flavipes (see e.g. Bagnères et al. 1990; Vauchot et al. 1998; Perdereau et al. 2010). 

 

3.3.Vibroacoustic experiments 

In response to the stimuli, soldiers and workers displayed body vibrations that they used to 

spread alarm within the groups. Using vibroacoustic preliminary tests in conjunction with high-

resolution video recordings, we observed that these vibrations were mainly drumming or 

tremulation. Drumming was produced by abdomen hits against the substrate, while tremulation 

was produced by tactile stimulation of nestmates with the head. In a few cases, soldiers 

displayed another kind of drumming signal consisting in powerful hits to the ground with their 

mandibles. 

We found that drumming and tremulation were used in combination by workers and soldiers, 

forming thus complex vibrations. These vibrations occurred in two kinds of bursts (series of 

hits). The first kind of burst was at a high frequency of 31±4 Hz, while the second kind of burst 

occurred at a low frequency of 7.4±1.3 Hz. High and low frequency vibrations were often 

performed together, the high frequency bursts preceding the low frequency bursts (Fig. 2, video 
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SV1). This could be defined as the typical pattern of vibratory behaviour in R. flavipes. 

Occasionally, the high and low frequency bursts were performed separately after disturbance. 

A third kind of drumming burst was specifically displayed by soldiers, and consisted of repeated 

hits to the substrate with the mandibles, at an average frequency of 26±2 Hz. Unfortunately, 

this particular behaviour occurred too scarcely (only 40 series recorded in all experiments 

combined) to be analysed in our vibroacoustic work. 

R. flavipes groups reacted to the alarm pheromone by producing vibroacoustic signals (Fig. S2). 

The intensity of these signals were nearly identical one and six minutes after the stimulation, 

with the exception of the response to CSH, which was lower after six minutes (Table 3, Fig. 3). 

The responses to CSH were stronger in the first minute after the stimulus introduction, while 

CWH stimulation triggered a long-lasting effect increasing with time during the timeframe of 

the experiment (Table 4).  

 

4. Discussion 

Alarm communication is an important component of the defensive strategies of many 

gregarious, colonial and social animals, and is used to coordinate defensive activities. In 

Reticulitermes flavipes, alarm signals are spread via tremulations, substrate-borne vibrations 

and alarm pheromones. Irrespectively of the communication channel, two modes of alarm 

transmission can be distinguished in natural situations: general alarm responses follow strong 

disturbance and affect large termite groups, while subtler specific alarm communication 

involves a few specimens reacting to low-level disturbance, such as the encounter of alien 

individual into the gallery system (Howse 1965b; Stuart 1963, 1988).  

Here we studied the general alarm responses of R. flavipes, and clearly showed that potential 

dangers, represented by air current, light flash, or crushed nestmate heads, are treated with 

differing types of alarm responses. The responses to air currents and crushed soldier heads were 

the most pronounced, and triggered immediate increase of speed-of-motion and quantity of 

vibroacoustic signals in workers and soldiers. These behavioural changes were abrupt and often 

lasted over 6 minutes.  

The observed vibroacoustic signals were made of complex vibratory movements, combining 

drumming and tremulations. They were produced by workers and soldiers repeatedly hitting 

their abdomen on the substrate. These examples of vibroacoustic communication combine two 
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kinds of bursts differing in beat frequencies, as described in Coptotermes gestroi, another 

species of Rhinotermitidae (see Hertel et al. 2011). A duration-dependent effect could be 

perceived and CSH samples elicited the strongest reaction during the first minute after the 

stimulation.  

CSH were not the only stimuli which could trigger vibrations, CWH revealed significant effect 

as well, as evidenced by the walking activity of soldiers and vibratory activity of both soldiers 

and workers. Our results concur with previous observations on Constrictotermes cyphergaster 

(Termitidae, Nasutitermitinae) (Cristaldo et al. 2015), in which the CWH also provoke marked 

behavioural responses in soldiers. C. cyphergaster workers possess enlarged mandibular glands 

with defensive function (Costa-Leonardo and Shields 1990), which are possibly the source of 

chemicals responsible for the change in behaviour. In contrast, no gland with defensive role is 

known in R. flavipes workers, and the source of the excitement remains unknown. 

Soldiers of R. flavipes also used their head and mandibles to perform powerful hits to the 

substrate, which produced a strong substrate-borne vibratory drumming-like signal, much 

stronger than the abdominal drumming. The same way of drumming has also been observed in 

Archotermopsidae (Kirchner et al. 1994), Rhinotermitidae (Hertel et al. 2011) and 

Macrotermitinae (Termitidae) (Connétable et al. 1999; Hager and Kirchner 2013; Kettler and 

Leuthold 1995; Röhrig et al. 1999). The strongest signals are probably used to warn nestmates 

and recruit soldiers from deeper inside the colony. 

Our chemical analysis showed high quantity of α- and β-pinene, and limonene produced by the 

frontal gland of R. flavipes soldiers. These compounds form the alarm pheromone in R. flavipes, 

as it has been previously suggested by several authors (Bagnères et al. 1990; Parton et al. 1981; 

Reinhard et al. 2003), although not all compounds might be necessary for the function, as they 

were never tested separately. The alarm pheromones involve various compounds classes, such 

as monoterpenes (also in R. flavipes), sesquiterpenes (for review see Šobotník et al. 2010) or 

quinones (Delattre et al. 2015), and are known to be released from the soldier defensive glands, 

namely the labial glands in Mastotermitidae and the frontal gland in Rhinotermitidae and 

Termitidae (Delattre et al. 2015; Kaib 1990; Kriston et al. 1977; Pasteels and Bordereau 1998; 

Reinhard and Clément 2002; Roisin et al. 1990; Šobotník et al. 2008a; Vrkoč et al. 1978).  

Until recently, alarm positive feedback was only demonstrated either for vibroacoustic 

(Connétable et al. 1999; Delattre et al. 2015; Hager and Kirchner 2013; Röhrig et al. 1999) or 

chemical signals (Roisin et al. 1990; Vrkoč et al. 1978). Integrative studies appeared only 
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recently, and vibroacoustic feedback to chemical alarm has been shown only in the basal 

Mastotermes (Mastotermitidae; Delattre et al. 2015) and the derived Constrictotermes 

(Termitidae: Nasutitermitinae; Cristaldo et al. 2015). In this study, we found the third example 

of vibroacoustic feedback to chemical alarm, as workers’ and soldiers’ speed-of-motion 

increased after exposure to head volatiles. Moreover, as showed in Connétable et al. (1999), it 

is likely that termites spread the alarm further using complex vibratory communication based 

on tremulations and drumming, contributing to the general state of colonial defensive activity 

(i.e. running away from the threat). 

Our work is the first exhaustive study on the alarm communication strategies in a species of 

Rhinotermitidae. Both workers and soldiers of R. flavipes reacted to all stimulations (light flash, 

air currents and crushed nestmate heads) with various degrees of excitement and displaying 

different vibratory movements. These observations show specialized alarm communication 

strategy based on complementary modalities, which could trigger an efficient response 

according to the nature and intensity of endangering stimulus. Moreover, R. flavipes is a pest 

species in Western USA (Evans 2011; Evans et al. 2013) and has been introduced to several 

places around the world (Bagnères et al. 1990; Smith et al. 2006; Evans et al. 2013), where it 

became invasive (originally described as R. santonensis, and later synonymized with R. flavipes 

by Austin et al. [2005]). The dominance of R. flavipes over R. grassei, which has already been 

observed in the field (Perdereau et al. 2011), might, at least partially, be explained by its 

sophisticated alarm communication strategy. 
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Tables 

 

Table 1. Differences in speed-of-motion between all stimulations after stimulus introduction 

for workers and soldiers in R. flavipes. Kruskal-Wallis for multiple comparisons statistic values 

(H5) and P values are provided for both castes. 

 

 Workers Soldiers 

Short-term response 

(1 min.) 

H5= 46 

P<0.001 

H5= 39.61 

P< 0.001 

Long-term response 

(6 min.) 

H5= 46.01 

P<0.001 

H5= 27.24 

P< 0.001 

 

Table 2. Chemical compounds identified by GC-MS from Reticulitermes flavipes worker and 

soldier samples (hexane extracts or headspace SPME). Abbreviations: Ø, no volatile compound 

detected; CHC, cuticular hydrocarbons. 

 

Extracts SPME 

Workers Soldiers Workers Soldiers 

CHC 

α-pinene 

β-pinene 

limonene 

CHC 

Ø 

α-pinene 

β-pinene 

limonene 

unknown 
compound 
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Table 3. Differences in vibratory behaviour (permutation tests for paired samples) recorded in 

termite groups (N=10) before and after the introduction of the stimulus. Abbreviations: CO, 

control blank paper; CWH, crushed worker head; CSH, crushed soldier head. 

	

Stimulation 
Short-term response  

(1 min) 

Long-term response  

(6 min) 

CO 
-0.959 

P= 0.359 

-0.5501 

P= 0.5977 

CWH 
-2.067 

P= 0.021 

-2.279 

P= 0.014 

CSH 
-1.908 

P= 0.006 

-1.574 

P= 0.057 

 

Table 4. Comparison between vibrational responses to crushed termite heads (N=10) 

(permutation tests for paired samples). Abbreviations: CO, control blank paper; CWH, crushed 

worker head; CSH, crushed soldier head. 

 

Stimulation comparison 
Short-term response 

(1 min) 

Long-term response 

(6 min) 

CO vs. CWH 
-1.839 

P= 0.063 

-2.378 

P= 0.027 

CO vs. CSH 
-1.841 

P= 0.047 

-1.579 

P= 0.088 
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Fig. 1. Change in speed of motion of workers (white bars) and soldiers (grey bars) in R. flavipes 

during a 1-minute period after exposition to experimental stimuli in comparison to controls. 

N=12 for each caste and each stimulus. Box plots show the median and 25–75th percentiles. 

Whiskers show all data excluding outliers outside the 10th and 90th percentiles (circles). 

Statistical differences are given for P<0.05. Abbreviations: CWH, crushed worker head; CSH, 

crushed soldier head. 
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Fig. 2. Example of vibratory behaviour showing the typical structure of the vibratory 

movements of workers and soldiers of Reticulitermes flavipes. The complex vibrations occurred 

at two distinct frequencies, described as high (31 Hz) and low (7.4 Hz) frequency bursts.  
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Fig. 3. Energy ratio difference in vibrations recorded in groups (N=10) before and after the 

introduction of the stimulus. Box plots show the median and 25–75th percentiles. Whiskers 

show all data excluding outliers outside the 10th and 90th percentiles (circles). Statistical 

differences are shown for *P< 0.05 and ** P< 0.01. Abbreviations: CO, control blank paper; 

CWH, crushed worker head sample; CSH, crushed soldier head sample. 


