6 research outputs found

    Biological and environmental factors as sources of variation in nocturnal behavior of giraffe

    No full text
    Upon a drastic decline of the giraffe population in the wild, conservation efforts and therefore the role of zoos have become more important than ever. With their unique opportunities, zoos provide excellent conditions to study animal behavior, expanding the knowledge about the giraffe's behavior repertoire and their ability to adapt. This study therefore examined the nocturnal behavior of 63 giraffe living in 13 different EAZA zoos across Germany and the Netherlands. Giraffe were observed and videos recorded via infrared sensitive cameras during the winter seasons 2015–2018. The observation period spanned nightly from 17:00 to 7:00. Thus, 198 nights, with a total of 2772 h were recorded and analyzed. Linear mixed models were then used to assess potential biological and environmental factors influencing behavior during the dark phase. Results show that individual variables such as age, subspecies and motherhood determined nocturnal activity and sleep behavior most. Among the variables studied, husbandry conditions and environmental factors complying with EAZA standards had no influence on the giraffe's nocturnal behavior. By combining nocturnal activity analyses and an assessment of potential influencing factors, our findings present a holistic approach to a better understanding of captive giraffe behavior and allow for management implications

    Construction and reconstruction of brain circuits: normal and pathological axon guidance

    Get PDF
    Perception of our environment entirely depends on the close interaction between the central and peripheral nervous system. In order to communicate each other, both systems must develop in parallel and in coordination. During development, axonal projections from the central nervous system (CNS) as well as the peripheral nervous system (PNS) must extend over large distances to reach their appropriate target cells. To do so, they read and follow a series of axon guidance molecules. Interestingly, whilst these molecules play critical roles in guiding developing axons, they have also been shown to be critical in other major neurodevelopmental processes, such as the migration of cortical progenitors. Currently, a major hurdle for brain repair after injury or neurodegeneration is the absence of axonal regeneration in the mammalian CNS. By contrasts, PNS axons can regenerate. Many hypotheses have been put forward to explain this paradox but recent studies suggest that hacking neurodevelopmental mechanisms may be the key to promote CNS regeneration. Here, we provide a seminar report written by trainees attending the second Flagship school held in Alpbach, Austria in September 2018 organized by the International Society for Neurochemistry (ISN) together with the Journal of Neurochemistry (JCN). This advanced school has brought together leaders in the fields of neurodevelopment and regeneration in order to discuss major keystones and future challenges in these respective fields

    Construction and reconstruction of brain circuits: normal and pathological axon guidance

    No full text
    Perception of our environment entirely depends on the close interaction between the central and peripheral nervous system. In order to communicate each other, both systems must develop in parallel and in coordination. During development, axonal projections from the CNS as well as the PNS must extend over large distances to reach their appropriate target cells. To do so, they read and follow a series of axon guidance molecules. Interestingly, while these molecules play critical roles in guiding developing axons, they have also been shown to be critical in other major neurodevelopmental processes, such as the migration of cortical progenitors. Currently, a major hurdle for brain repair after injury or neurodegeneration is the absence of axonal regeneration in the mammalian CNS. By contrasts, PNS axons can regenerate. Many hypotheses have been put forward to explain this paradox but recent studies suggest that hacking neurodevelopmental mechanisms may be the key to promote CNS regeneration. Here we provide a seminar report written by trainees attending the second Flagship school held in Alpbach, Austria in September 2018 organized by the International Society for Neurochemistry (ISN) together with the Journal of Neurochemistry (JCN). This advanced school has brought together leaders in the fields of neurodevelopment and regeneration in order to discuss major keystones and future challenges in these respective fields

    Inactivity/sleep in two wild free-roaming African elephant matriarchs – Does large body size make elephants the shortest mammalian sleepers?

    Get PDF
    The current study provides details of sleep (or inactivity) in two wild, free-roaming African elephant matriarchs studied in their natural habitat with remote monitoring using an actiwatch subcutaneously implanted in the trunk, a standard elephant collar equipped with a GPS system and gyroscope, and a portable weather station. We found that these two elephants were polyphasic sleepers, had an average daily total sleep time of 2 h, mostly between 02:00 and 06:00, and displayed the shortest daily sleep time of any mammal recorded to date. Moreover, these two elephants exhibited both standing and recumbent sleep, but only exhibited recumbent sleep every third or fourth day, potentially limiting their ability to enter REM sleep on a daily basis. In addition, we observed on five occasions that the elephants went without sleep for up to 46 h and traversed around 30 km in 10 h, possibly due to disturbances such as potential predation or poaching events, or a bull elephant in musth. They exhibited no form of sleep rebound following a night without sleep. Environmental conditions, especially ambient air temperature and relative humidity, analysed as wet-bulb globe temperature, reliably predict sleep onset and offset times. The elephants selected novel sleep sites each night and the amount of activity between sleep periods did not affect the amount of sleep. A number of similarities and differences to studies of elephant sleep in captivity are noted, and specific factors shaping sleep architecture in elephants, on various temporal scales, are discussed
    corecore