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Abstract:

Perception of our environment entirely depends on the close interaction between the 

central and peripheral nervous system. In order to communicate each other, both 

systems must develop in parallel and in coordination. During development, axonal 

projections from the central nervous system (CNS) as well as the peripheral nervous 

system (PNS) must extend over large distances to reach their appropriate target cells. To 

do so, they read and follow a series of axon guidance molecules. Interestingly, whilst 

these molecules play critical roles in guiding developing axons, they have also been 

shown to be critical in other major neurodevelopmental processes, such as the migration 

of cortical progenitors. Currently, a major hurdle for brain repair after injury or 

neurodegeneration is the absence of axonal regeneration in the mammalian CNS. By 

contrasts, PNS axons can regenerate. Many hypotheses have been put forward to 

explain this paradox but recent studies suggest that hacking neurodevelopmental 

mechanisms may be the key to promote CNS regeneration. Here, we provide a seminar 

report written by trainees attending the second Flagship school held in Alpbach, Austria 

in September 2018 organized by the International Society for Neurochemistry (ISN) 

together with the Journal of Neurochemistry (JCN). This advanced school has brought 

together leaders in the fields of neurodevelopment and regeneration in order to discuss 

major keystones and future challenges in these respective fields.

Introduction:

The first anatomical reference of the brain dates back to the ancient Egyptian 

mummifications. However, the tremendous complexity of this organ was revealed by the 

work of the world-renowned neuroscientist Santiago Ramón y Cajal. Nevertheless, his 

anatomical descriptions could not fully explain the cellular and molecular events at the 

origin of behavioral, motor or sensitive responses. Today, it is clear that the central 

nervous system (CNS) is the processing center for these events. Moreover, fine sensory 

perception and intricate motor control are orchestrated by a discrete and permanent 
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communication between the CNS and the peripheral nervous system (PNS). In the last 

century, neuroscientists have investigated the mechanisms involved in the development 

and plasticity of this structure. To address these fundamental questions, researchers 

made use of simple and accessible animal models. Drosophila melanogaster was one of 

the first organisms used due to several technical advantages: amenability to genetic 

manipulation, short lifespan and large number of offsprings. Studies emanating from this 

model system paved the path towards our understanding of major neurodevelopmental 

mechanisms involved in vertebrate behavior, neuronal migration and differentiation 

among many others (Bellen et al. 2010). Danio rerio (zebrafish), quickly emerged as an 

attractive more complex animal model. Like the Drosophila melanogaster, the zebrafish 

model also possessed a short lifespan and a large number of offsprings. However, it 

provided the advantage of studying neurodevelopmental mechanisms in vertebrates 

(d’Amora and Giordani 2018). While findings in these two models have led to major 

findings in the field of neuroscience, there are still significant gaps in our understanding of 

human development. Over the last 50 years, Mus musculus and Rattus norvegicus are 

classic models in neuroscience research due to their closer phylogenetic proximity to 

humans (Ellenbroek and Youn 2016). 

In parallel to these findings, a large number of pathologies related to the CNS have 

emerged over the last century. This is mainly related to the aging population, 

encountering previously unknown neuro-degenerative diseases. The rising prevalence of 

these neurodegenerative diseases has urged the need for novel and more effective 

therapies (Gitler et al. 2017). Quickly, the idea emerged that developmental processes 

could be reinitiated to induce regeneration and brain repair. In an effort to target these 

fundamental questions, the Journal of Neurochemistry organized in September 2018 a 

workshop in Alpbach, Austria, gathering some of the most prominent researchers in the 

field of developmental neurobiology and regeneration in order to discuss the most 

significant findings and current challenges in these fields. Trainees attending this 

workshop have drafted a seminar report of this workshop listing the major advances and 

putting forward major questions in the field.

The Developing Nervous System

Metazoans all possess an axis of symmetry. In contrast to radiata (radial symmetry), 

Bilateria possess a two-fold symmetry. Thus, bilateria have a front and rear as well as left A
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and right sides. To connect its two lateral halves, the CNS of bilateria possesses 

commissural neurons. These neurons, which are born embryonically, project their axons 

contra-laterally to connect the left and right side of the organism. Together, these 

commissural networks not only allow for integration and coordination of left-right neuronal 

activities, but are essential for the correct processing and interpretation of various 

sensory information, the coordination of motor responses and other brain functions 

(Ducuing et al. 2019; Stoeckli 2018; Gaudet and Fonken 2018). Many commissural tracts 

exist in the CNS (Chédotal 2014). Here, we will discuss the three major systems: the 

corpus callosum, the ventral commissure of the spinal cord, and the optic chiasm.

Forebrain

The forebrain possesses two main cortical projection neurons: cortico-cortical, that form 

the corpus callossum, and cortico-fugal, further subdivided into corticothalamic and 

coroticospinal tracts (Leyva-Díaz and López-Bendito 2013). 

The corpus callosum (CC) is the largest brain commissure and develops alongside 

neocortex expansion. Interestingly, this structure is unique to eutherian mammals and 

relays information between left and right hemispheres via the midline (Suárez et al. 2014; 

Gazzaniga 2000). Corpus Callosum dysgenesis affects ~1:4000 live births that result in 

either partial or complete absence (agenesis) of the CC (Edwards et al. 2014). Initially the 

two hemispheres are separated, at the midline, by the interhemispheric fissure 

(IHF)(Rakic and Yakovlev 1968). This region is lined by specialized astroglial and 

neuronal cells that are required for proper CC tract formation (Gobius et al. 2016; Silver 

et al. 1982; Gobius et al. 2017; Niquille et al. 2009). In addition to providing a permissive 

substrate for callosal growth cones to grow across the midline, midline cells also secrete 

guidance cues. Pre-crossing CC axons are sensitive to Slit2, expressed by these 

astroglia, which acts as a repulsive cue to constrain callosal axons expressing the 

Roundabout (Robo) receptors 1/2 (Unni et al. 2012). In contrast, netrin-1, expressed by 

the cingulate cortex, counteracts the Slit2 repulsive signal by attracting callosal axons 

expressing the transmembrane receptor Deleted in Colorectal Cancer (Dcc) (Fothergill et 

al. 2014). Indeed, loss of Dcc or netrin-1 leads to CC agenesis (Serafini et al. 1996; 

Fothergill et al. 2014). In addition to netrin-1, semaphorin (Sema3C) is secreted at the 

midline and attracts callosal axons expressing the neuropilin 1 receptor (Nrp1, figure 1A) A
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(Niquille et al. 2009). Once CC axons have reached and crossed the midline, this 

attractive signal is switched off (Mire et al. 2018). This coincides with an upregulation of 

the transmembrane protein ephrin-B1 in post-crossing CC axons. Interestingly, ephrin-B1 

possesses a unique Asparagin residue (N-139), not shared by other ephrins, which once 

glycosylated can allow ephrin-B1 interaction with Nrp1 and silence Sema3C/Nrp1 

attraction (Mire et al. 2018)(figure 1B). These findings identify a novel mechanism 

involving interaction between Sema3c/Nrp1 and Ephrinb1 during midline crossing in the 

corpus callosum (figure 1). 

Optic Chiasm

Another critical component of the CNS is visual perception. The functional unit of the eye 

is the retina (figure 2A), which is a highly organized structure. Photoreceptor cells are 

photosensitive cells that transform photons of light into an electrical impulse that is 

transmitted to bipolar cells and subsequently to Retinal ganglion cells (RGCs). RGCs 

relay this electrical signal to the brain along their axons that form the optic nerve. 

Importantly, whilst other retinal cell types can modulate the electrical signal mediated by 

photoreceptor cells, such as amacrine and horizontal cells, RGCs are the only output 

neuron from the retina and connecting it to the brain. During visual system development, 

retinal ganglion cells (RGCs) extend axons towards a specialized structure at the midline, 

named the optic chiasm (OC). At this point, RGCs will either project to the same 

hemisphere (ipsi-lateral) or cross the midline to project to the opposite hemisphere 

(contra-lateral). Therefore, two types of RGCs, ipsilateral RGCs (iRGCs) and 

contralateral RGCs (cRGCs) can be defined by the laterality of their projections (Williams 

et al. 2004). 

This process is critical for depth perception, stereopsis. Indeed, since both eyes will 

obtain a “picture” of our environment, by combining these pictures we will generate a 

three-dimensional (3D) representation of the picture. Interestingly, the amount of overlap 

between each eye is directly proportional to the amount of ipsi-lateral projections. For 

instance, species with laterally positioned eyes, such as mice, possess only 3-5% of ipsi-

laterally projecting RGCs. However, humans and primates, with more frontally positioned 

eyes, possess approximately 50% of ipsi-laterally projecting RGCs (Guillery et al. 1995; 

Herrera et al. 2019; Jeffery and Erskine 2005). Mouse iRGCs and cRGCs are A
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characterized by specific transcriptional patterns and, in part, spatial localization, with 

iRGCs residing in the ventro-temporal retina, and cRGCs being dispersed across the 

retina (García-Frigola et al. 2008; Herrera et al. 2003; Pak et al. 2004; Williams et al. 

2006; Kuwajima et al. 2017)(figure 2B-C).

In order to control the crossing of RGC axons at the OC, two processes take place: 

repulsion of axons with an ipsi-lateral fate, and the crossing of contralateral axons across 

the midline (figure 2D). EphB1/ephrin-B2 signaling pathway is a key component of ipsi-

lateral axon repulsion. Expression of the EphB1 tyrosine kinase receptor is restricted to 

axons of iRGCs, while its ligand, the repulsive axon guidance molecule ephrin-B2, is 

expressed at the OC (Williams et al. 2003). When the axons reach the proximity of the 

OC, a chemo-repulsive gradient of ephrin-B2 leads to growth cone collapse and pausing 

of axonal outgrowth, eventually causing changes of trajectory and driving the axon 

towards ipsi-lateral visual nuclei (Petros et al. 2010). It was further shown that RGC axon 

laterality is transcriptionally regulated. The transcription factor Zic family member 2 (Zic2) 

was identified as a key regulator of iRGCs identity (Herrera et al. 2003; Wang et al. 

2016). Furthermore, Zic2 is sufficient to induce the expression of EphB1 receptor in 

iRGCs (Lee et al. 2008; García-Frigola et al. 2008)(figure 2C). In addition, the 

transcription factor Forkhead box D1 (Foxd1) was shown to be critical in maintaining 

iRGCs fate by promoting the expression of Zic2 (Herrera 2004). In addition to the 

EphB1/ephrin-B2 repulsion pathway, another pathway also controls ipsilateral RGC 

repulsion: Shh is expressed by contralateral RGCs and transported axonally and 

anterogradely to the optic chiasm (Peng et al. 2018). At the optic chiasm, ipsilateral 

RGCs, which express the Shh receptor Boc, are repelled by Shh and therefore do not 

cross the optic chiasm, remaining ipsilateral (Peng et al. 2018; Fabre et al. 2010) (figure 

2D).

In contrast, cRGC axons express the L1 cell adhesion molecule (L1CAM), the neuronal 

cell adhesion molecule (NrCAM), and the semaphorin receptor Plexin-A1. Together, 

these molecules provide a permissive substrate for cRGCs to invade and cross the OC 

(Williams et al. 2006; Kuwajima et al. 2012). Transcriptionally, the Sox C family of 

transcription factors (Sox4, Sox11, Sox12) was identified as key regulators for cRGC fate 

by regulating NrCAM and PlexinA1 expression (Kuwajima et al. 2017)(figure 2C,D). In A
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addition, the transcription factor Islet2 is expressed by ~30% of cRGCs, mainly 

expressed by late-born cRGCs (Pak et al. 2004; Kuwajima et al. 2017). Furthermore, the 

leucine-rich repeat (LRR) receptor Islr2 has been shown to be expressed on cRGCs and 

its deletion leads to aberrant ipsi-lateral projections in Danio Rerio (Panza et al. 2015). 

Interestingly, binocular vision is impaired in patients with albinism (an absence of melanin 

production of the retinal pigmented epithelium). This led researchers to study the role of 

pigmentation on iRGCs. It was found that albino mice have less iRGCs, but a normal 

number of cRGCs (Rebsam et al. 2012). This appears to be linked to the timing of RGC 

differentiation: albino animals have a shorter time window during which iRGCs are born 

which is compensated by an increased number of cRGCs (Bhansali et al. 2014). 

Furthermore, the functional comparison of gene expression in albino and pigmented 

retinas, showed that the Wnt-pathway, which controls iRGC differentiation and cell 

proliferation, is dysregulated in albino animals (Iwai-Takekoshi et al. 2018). Rescue of 

ipsi-lateral deficit via blockage of Nr-CAM may improve visual capability in albino animals, 

thereby providing a paradigm for functionally investigating the consequences of natural 

ipsi-lateral depletion (Williams et al. 2006). 

Interestingly, the existence of another population of RGCs has been described to project 

between the two retinas (retino-retinal projection) in various vertebrate species (Tóth and 

Strznicky 1989; Müller and Holländer 1988; Nadal-Nicolás et al. 2015). More recently, it 

was described that this population resides in the ventro-nasal retina and is transient 

(E16.5 to postnatal day 4) (Murcia-Belmonte et al. 2019). These late-born RGCs were 

shown to express Unc5c, a netrin-1 receptor. Upon reaching the optic chiasm, Unc5c-

positive RGCs are repelled by netrin-1 and project into the contralateral optic nerve. 

Indeed, Unc5c is both sufficient and necessary for retino-retinal projections (Murcia-

Belmonte et al. 2019). However, the precise connection and function of this projection 

remains to be characterized. Moreover, the implication of this projection in co-ordinating 

spontaneous activity remains to be studied.

Spinal Cord

In the developing spinal cord, midline crossing takes place ventrally through a structure 

named the floor plate (FP). The FP is a crucial patterning center composed of specialized 

A
cc

ep
te

d
 A

rt
ic

le



This article is protected by copyright. All rights reserved

cells that contribute to the specification of the neuronal lineages of the neural tube and 

adjacent territories. Moreover, the FP is a source of both growth-promoting and growth-

repulsive cues for commissural axons, such as netrin-1 and Slits (Chédotal 2019). In 

vertebrates, spinal commissural axons navigate first ventrally toward the floor plate 

(figure 3A), cross the midline and then turn rostrally or caudally (figure 3D). According to 

the current model, the sensitivity to midline repellents is silenced in pre-crossing 

commissural growth cones as they navigate toward the FP. However, during FP crossing, 

commissural growth cones gain responsiveness to FP repulsive cues. The post-crossing 

commissural neurons are thus expelled from the midline, and also prevented from re-

crossing the FP. At later stages, they follow rostro-caudal gradients of guidance cues, 

turning rostrally or caudally in the ventral or lateral funiculi (Gaudet and Fonken 2018; 

Ducuing et al. 2019; Chédotal 2019). 

Commissural axon guidance before midline crossing

The earliest born spinal commissural neurons will extend their axons towards the pial 

surface of the spinal cord and ventrally towards the FP (figure 3A). For many years it was 

thought that a long-range gradient of the secreted protein netrin-1 is generated by the FP 

and attracts commissural neurons ventrally upon binding the receptor Dcc (Finci et al. 

2015; Hiramoto et al. 2000). However, recent studies have challenged this model and 

rather support a local and haptotactic function of netrin-1. Indeed, netrin-1 is not only 

expressed by FP cells but also by the neural progenitors of the ventricular zone of the 

spinal cord and brainstem. In support to this model, specific deletion of netrin-1 at the FP, 

does not perturb commissural axon crossing in the hindbrain (Dominici et al. 2017; 

Yamauchi et al. 2017). Interestingly, in the spinal cord, midline crossing appears slightly 

delayed (Moreno-Bravo et al. 2019) and some axons are misguided before crossing 

(Moreno-Bravo et al. 2019; Varadarajan et al. 2017; Wu et al. 2019). These results 

suggest that floor plate-derived netrin-1 is dispensable for commissural axon crossing, 

but also highlight different mechanism of action of netrin-1 between the hindbrain and the 

spinal cord. Importantly, ablating netrin-1 expression in ventricular zone progenitors 

severely perturbs midline crossing in the brainstem (Dominici et al. 2017; Yamauchi et al. 

2017) but only mildly in the spinal cord (Moreno-Bravo et al. 2019). However, the 

simultaneous deletion of ventricular and FP derived netrin-1 prevents midline crossing A
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(Moreno-Bravo et al. 2019). Therefore, in the spinal cord, both sources of netrin-1 

cooperate to guide commissural neuron at the midline. Other secreted proteins such as 

VEGF (Ruiz de Almodovar et al. 2011) and Shh (Bovolenta and Sanchez-Arrones 2012; 

Charron et al. 2003; Sloan et al. 2015; Wu et al. 2019) are expressed at the floor plate 

and act redundantly with netrin-1 to attract axons as they get close to the FP.

Robo3, a member of the Roundabout (Robo) family, plays a key role in midline guidance. 

This receptor is expressed transiently by commissural axons in mouse spinal cord, 

midbrain and hindbrain and then is rapidly down-regulated after the axons have crossed 

the FP (Belle et al. 2014; Zelina et al. 2014). It is expressed in human pontine neurons 

(Jen et al. 2004) and in hindbrain and spinal cord commissural axons of birds (Escalante 

et al. 2013; Friocourt and Chédotal 2017; Philipp et al. 2012) and other vertebrate 

species (Friocourt et al. 2019). The absence of Robo3 leads to a complete loss of several 

commissures in mice and in humans (Jen et al. 2004; Marillat et al. 2004; Renier et al. 

2010; Sabatier et al. 2004; Michalski et al. 2013). The mechanism through which Robo3 

controls commissure development is not completely understood. However, it was 

proposed that Robo3 expression in pre-crossing commissural neurons repress Slit/Robo 

repulsion (figure 3B), thus allowing commissural axons to reach, enter, and cross the 

ventral midline in response to netrin-1 attraction (Jaworski et al. 2010; Sabatier et al. 

2004; Chédotal 2011). This mechanism has been validated in the spinal cord and lateral 

reticular nucleus. Interestingly, the inferior olivary nucleus does not seem to follow the 

same mechanism (Di Meglio et al. 2008). However, it was initially proposed that Robo3 

may facilitate attraction of commissural neurons to the floor plate, independently of 

Slit/Robo signaling (Di Meglio et al. 2008; Jaworski et al. 2010; Sabatier et al. 2004). 

More recent studies support this notion. Indeed, whilst non-mammalian Robo3 retained 

its ability to bind Slits, the mammalian orthologue of Robo3 has lost key residues in the 

Slit/Robo binding domain (Zelina et al. 2014). Instead, it possesses the ability to bind to 

netrin-1, by creating a receptor complex between Dcc and Robo3 via Src kinases, on a 

conserved tyrosine residue and contributes to the attractive actions of netrin-1 (Zelina et 

al. 2014). Therefore, Robo3 might promote attraction to the ventral midline rather than 

counteract repulsion.

A
cc

ep
te

d
 A

rt
ic

le



This article is protected by copyright. All rights reserved

To date, several transcription factors have been associated with the most dorsal 

commissural population, dl1, which arises from the Atoh1+ domain (Chédotal 2014). 

These interneurons are divided in two different subtypes depending on the location of 

their targets: ipsilateral (dl1i) or contralateral (dl1c) (Wilson et al. 2008). Interestingly, 

their projection pattern relies on the balance between the expression of two transcription 

factors Lhx2 and Lhx9 (Lim homeobox) and their upstream activation by the transcription 

factor Barhl2 (Ding et al. 2012). Lhx2 is able to directly bind to the regulatory region of 

Robo3 and modulate its expression in a dose-dependent manner. Moreover, in Lhx2/9 

knockouts, most of dl1 interneurons fail to cross the midline and project ipsilaterally 

(Wilson et al. 2008; Marcos-Mondejar et al. 2012).

Furthermore, the transcription factor Zic2 triggers an ipsilateral transcriptional program 

but also inactivates a contralateral one (Escalante et al. 2013). Indeed, downregulation of 

Zic2 by in utero electroporation of siRNA induces an abnormal upregulation of Robo3 and 

a contralateral projection of dorsal horn neurons. On the other hand, a Zic2 gain of 

function has the reverse effect, reducing Robo3 expression and an increase of ipsilateral 

projections. In addition to modulating Robo3 expression, Zic2 is necessary and sufficient 

to induce EphA4 expression and commissural neuron repulsion in response to midline 

ephrinB’s.

Commissural axon guidance after midline crossing

Upon FP crossing, commissural axons become sensitive to a myriad of repulsive 

guidance molecules expressed at the FP. However, prior to midline crossing, 

commissural axons do not express the receptors (at the surface) required to sense this 

repulsive environment. One such example is the repulsive receptor, PlexinA1, which is 

down-regulated at the surface of commissural neurons prior to midline crossing (figure 

3C). PlexinA1 down-regulation at the growth cone involves the protease, Calpain-1 

(Charoy et al. 2012; Nawabi et al. 2010). However upon FP entry, commissural neurons 

become exposed to the neuronal cell adhesion molecule (NrCAM) that inhibits calpain-1 

activity (figure 3F). As a result, PlexinA1 can accumulate at the growth cone which 

becomes sensitive to the repulsive cue Sema3B (expressed at the FP) (Charoy et al. 

2012; Nawabi et al. 2010). In addition to PlexinA1, the semaphorin receptor Neuropilin 2 

(Nrp2) is also expressed at the growth cone following FP entry. Indeed, Sema3B and 
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Nrp2 double mutants display FP stalling as well as post-crossing misrouting (Nawabi et 

al. 2010; Parra and Zou 2010). 

Slits are other repulsive cues expressed at the FP (Brose et al. 1999). As with PlexinA1 

and Nrp2, commissural axon growth cones start expressing the Robo 1 and Robo2 

receptors only after midline crossing, and become sensitive to Slit repulsion (figure 3E). 

Indeed, deletion of Robo receptors results in commissural axons stalling at the FP (Long 

et al. 2004; Garbe and Bashaw 2007; Blockus and Chédotal 2016). However, Silts can 

also function independently of Robo receptors. In vertebrates, Slits can be cleaved into 

two separate fragments (Brose et al. 1999; Wang et al. 1999). The shorter fragment (Slit-

C) is able to bind to PlexinA1 in commissural neurons to induce growth cone collapse 

(Delloye-Bourgeois et al. 2015). 

Once commissural axons have exited the FP, they are then guided by other cues to 

continue either rostrally or caudally. Little is known about the cues guiding postcrossing 

axons along the midline. However, Wnt signaling has been shown to be critical in this 

process (Onishi et al. 2014). An expression gradient of several Wnt family proteins 

controls the rostral turning of post-crossing commissural axons through an attractive 

mechanism involving the Frizzled3 (Fzd3) receptor (Lyuksyutova et al. 2003; Yoshikawa 

et al. 2003). The disruption of the Wnt gradient, results in a randomization of the growth 

of post-crossing commissural axons, which randomly turn towards the anterior or 

posterior part (Yoshikawa et al. 2003; Zou 2004). Recently, a mechanism orchestrating 

Wnt activation has been proposed. During FP crossing, commissural neurons expressing 

Smoothened (Smo) are exposed to the morphogen sonic hedgehog (Shh). This 

interaction leads to the reduction in mRNA translation of Shisa2, a well-known Wnt 

signaling inhibitor. Shisa2 inhibits the Wnt receptor Frizzled (Fzd3) trafficking to the cell 

surface by interfering with its glycosylation, inactivating Wnt signaling (Onishi and Zou 

2017). Moreover, it has been shown that components of the planar cell polarity (PCP) 

signaling pathway mediate Wnt attraction and the anterior turning of commissural axons 

(Onishi et al. 2014; Zou 2012; Lyuksyutova et al. 2003). In addition to the PCP pathway, 

the canonical Wnt signaling pathway is critical in mediating post-crossing commissural 

neuron turning. Indeed, down regulation of both Lrp5 and Lrp6 (Low density lipoprotein 

receptor-related protein, co-receptors for Frizzled), which are required in the -catenin-
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mediated canonical Wnt pathway, lead to major defects in post-crossing commissural 

neurons (Avilés et al. 2016).

Shh also guides post-crossing commissural axons (Bourikas et al. 2005; Yam et al. 

2012). After crossing, commissural axons become repelled by Shh and project anteriorly 

along a posterior-high Shh and anterior-high Wnt4 gradients. However, instead of 

mediating its action through Patched or smoothened, Shh acts through the Hedgehog 

Interacting Protein (Hip). Further experiments showed that this switch in Shh 

responsiveness depended on the levels of 14-3-3 proteins, which are low in pre-crossing 

and high in post-crossing commissural neurons, and modulate Protein Kinase A activity 

(Yam et al. 2012).

Peripheral nervous system development

The bilaterian nervous system is subdivided in two main components: the central and the 

peripheral nervous systems (CNS and PNS). Permanent cross-talk between the CNS 

and PNS is critical for integration of sensory inputs. In the 4th century BC, Alcmaeon of 

Croton (Goddard et al. 1996)(Zolog 1994) proposed the first theory about channels 

(“poroi” in ancient greek) that would connect the senses and the brain, this last one being 

the center of human perception. Later, it became clear that all sensory perception being 

mechanical, auditory, gustatory and olfactory were relayed to the CNS through the 

“nerves” (Mazengenya and Bhikha 2017). Indeed, the precise interplay between these 

two networks develop in parallel during embryonic development (Ben-Arie et al. 2000). 

Additionally, it has been demonstrated that both axon guidance and neuronal activity can 

strongly modulate connections between the PNS and the CNS (Wang and Bergles 2015; 

Bonanomi and Pfaff 2010). Nevertheless, the PNS is itself formed by different 

components, each specialized in the transmission of a specific signal to the CNS. These 

signals are transmitted by mechanosensory, chemical or thermal receptors projecting to 

the mammalian spinal cord via nociceptive afferents. 

Drosophila bristles are sensory organs that are tightly distributed and contain one single 

mechanosensory neuron that specifically projects to the CNS. These axons can be 

guided by cell adhesion molecules, such as Neuroglian or Flamingo (Martin et al. 2008; 

Steinel and Whitington 2009), but also by other guidance molecules, such as Plexins or 

semaphorins (Wu et al. 2011). Down syndrome cell adhesion molecule (DSCAM) is a 
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transmembrane receptor of the immunoglobulin-superfamily (Chen et al. 2006). DSCAM 

has since been described to regulate cell targeting, axon branch specification, and 

dendrite patterning (Schmucker et al. 2000; Wang et al. 2002a; Dascenco et al. 2015). 

The repulsive molecule, Slit, has been shown to bind and signal through DSCAM1 

independently of Robo receptors (Chen et al. 2006). Indeed, local binding to Slit drives 

spatial specificity of axon collateral formation. Furthermore, Chen et al. report that many 

DSCAM isoforms exist and particular DSCAM isoform mosaicism in a specific growth 

cone appears to dictate local guidance decisions, such as the formation of axon collateral 

projections (Chen et al. 2006).

The inner ear is essential for the transmission of sounds and their integration by the CNS. 

This complex sensory organ is composed of bipolar spiral ganglion neurons (SGN) that 

connect the ipsilateral cochlear nucleus and the mechanosensory inner and outer hair 

cells located in the organ of Corti (Nayagam et al. 2011). SGNs project to both the inner  

(IHC) and the outer hair cells (OHC). During the course of development, both type I and II 

project to the OHC but type I SGNs appear to refine in later stages and only project to the 

IHC (Huang et al. 2012; Safieddine et al. 2012; Druckenbrod and Goodrich 2015). The 

use of molecular markers to target single spiral ganglia has revealed key morphological 

differences between type I and type II SGNs as well as their specific projection patterns 

to the IHC or outer hair cells OHC (Druckenbrod and Goodrich 2015; Coate et al. 2015). 

Indeed, type I and II SGNs were shown to be molecularly different. Type I SGNs express 

the semaphorin receptor Nrp2 and its co-receptor PlexinA3 (Coate et al. 2015). Upon 

binding Sema3F, secreted by the OHC, type I SGNs are repulsed and restrict their 

projections to the IHC (Coate et al. 2015). More recently, the use of single sequencing 

has allowed a more in depth characterization of SGNs. In this study, Shrestha et al. 

identified that type I SGNs can be further classified into three different subtypes 

(Shrestha et al. 2018). These data suggest a growing complexity of the auditory system 

formation and integration of external signals. 

These examples underline the complexity of PNS development. With the aim of 

understanding the surrounding environment, each of these systems seems to have its 

own guidance mechanisms, which through a tight and orchestrated regulation, establish 

an essential pathway between sensory neurons and superior brain areas. Novel genetic A
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and technical approaches also highlight the cellular heterogeneity in these systems, most 

of them considered quite homogeneous until recently. The understanding of the 

molecular differences between cell types in a determined structure is a key element in 

establishing therapeutic approaches such as stem cell therapy. Moreover, these 

molecular differences can also help to understand the possible effects of different known 

guidance mechanisms. Lastly, several groups have tried to understand the role of 

spontaneous activity in these structures. Neural activity has been observed to happen 

randomly in most structures, since early development (Shrestha et al. 2018).  This 

neuronal activity could be essential to pattern and reinforce synapses, as was shown in 

the visual system (Ackman and Crair 2014). 

Non-traditional roles of axon guidance molecules

Axon guidance molecules have been extensively studied during axonal development but 

have also been shown to be critical in many diverse biological processes such as 

angiogenesis and cell migration (Castets and Mehlen 2010; Aberle 2019). Undeniably, 

cortical development is dependent on cellular migration. A fundamental question for the 

past decades has been the emergence of the neocortex, a specific feature of the 

mammalian brain (Northcutt 2006; Finlay and Darlington 1995). Cortical development 

begins with the division of radial glial progenitor cells (RGPCs), which gives rise to all 

cortical neurons and glia. RGPCs are aligned at the cortical ventricular zone and undergo 

mitosis to either self-renew (symmetric division = indirect neurogenesis), or differentiate 

into cortical neurons (asymmetric division = direct neurogenesis). However, in mammals 

RGPCs can also divide symmetrically to give rise to an intermediate progenitor cell 

(IPCs) (Haubensak et al. 2004; Noctor et al. 2004; Miyata et al. 2004). IPCs can either 

self renew or differentiate into cortical neurons. Thus, IPCs have been proposed to serve 

as the main determinant for cortex expansion in mammals (Malatesta et al. 2000; Noctor 

et al. 2001; Noctor et al. 2004; Kriegstein et al. 2006; Hansen et al. 2010; Smart 2002). 

Recently, Cardenas et al. have identified a novel role for Robo 1/2 in regulating radial glia 

cortical migration (Cárdenas et al. 2018). By comparing the mouse olfactory bulb (OB) 

(reminiscent of the reptilian paleocortex) to the cortex (Cx), Cardenas et al. observed that 

the OB solely developed by direct neurogenesis whereas the Cx was developed mostly 

by indirect neurogenesis (Cárdenas et al. 2018). Interestingly, Robo1/2 were expressed 

in a gradient, with a high-low expression in the OB compared to the Cx. Furthermore, it A
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was shown that Robo1/2 can regulate the notch canonical signaling pathway via Delta-

like 1 (Dll1) as well as the ligands jagged 1 (Jag1) and Jag2. The mechanism put forward 

is that high Robo1/2 expression in the OB reduces Dll1 expression and increases Jag1 

and Jag2 expression, resulting in asymmetric division and direct neurogenesis. Indeed, 

gain of function experiments showed that high Robo1/2 expression is sufficient to induce 

direct neurogenesis in the mouse Cx (Cárdenas et al. 2018). Interestingly, amniotes 

deprived of a neocortex, such as birds and reptiles, show high Robo1/2 expression in the 

cortex (Cárdenas et al. 2018). Thus, the authors propose silencing of Robo1/2 as an 

evolutionary switch giving rise to indirect neurogenesis in mammals.

The Fibronectin Leucine Rich-repeat Transmembrane (FLRTs) proteins have also been 

identified as axon guidance molecules. For instance, thalamocortical axons expressing 

Dcc are not sensitive to the netrin-1 gradient present in the thalamus due to Robo1 

silencing (Leyva-Díaz et al. 2014). However, FLRT3 can sequester Robo1 to allow for 

Dcc expression at the surface of thalamocortical neurons, thereby activating netrin-1 

responsiveness (Leyva-Díaz et al. 2014). More recently, FLRTs have also been 

implicated with cortical progenitor migration (del Toro et al. 2017). In mammals the cortex 

initially forms as a laminar sheet. Whilst some mammals (mice and rats) will retain this 

smooth cortical development (lissencephaly, figure 4A), other mammals (primates and 

ferrets) develop cortical folds (gyrencephaly, figure 4B). FLRT1/3 have recently been 

shown to be critical players in this process (del Toro et al. 2017). Interestingly, genetic 

ablation in mice of FLRT1/3 promotes cortical folding (del Toro et al. 2017). Whilst the 

proliferation rate of radial glia cells was unchanged, their migratory patterns were 

significantly perturbed. Indeed, loss of FLRT1/3 increased neuronal clustering and radial 

migration rate. This creates columns of migrating progenitors, inducing an asymmetric 

proliferation across the surface of the cortex and as a result creating sulci. Of note, 

FLRT1/3 expression is reduced in gyrencephalic species, suggesting that the abundance 

of FLRT1/3 during evolution promoted cortical smoothing (lissencephaly).

Whilst typical axon guidance proteins such as Slits and ephrins have been largely 

discussed, a growing body of literature has shown that some lipids could be atypical 

guidance molecules. Phospholipids are considered the major components of cell 

membranes and they have the ability to form amphipathic lipid bilayers. Their role in axon 

guidance was first proposed by some in vitro experiments in which Lysophosphatidic acid A
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(LPA), an intermediate substance of lipid synthesis, was shown to be able to induce 

growth cone collapse, neurite retraction and cell rounding in neuroblastoma-derived 

neuronal cell cultures (Jalink et al. 1993). Later on, further evidence highlighted their role 

on primary cultured chick embryo neurons and on isolated retinal growth cones (Saito 

1997; Campbell and Holt 2001). Additional in vivo evidence of the axon guidance role of 

lysophospholypids were obtained in the Xenopus visual system. In absence of 

sphingosine 1-phosphate (S1P), retinal projections were misguided and invaded 

abnormal areas (Strochlic et al. 2007). Recently, a novel role for phospholipids on axon 

guidance was brought to light: Phosphatidyl-B-D-Glucoside (PtdGlc) is localized in radial 

glia and nascent astrocytes in vivo (Nagatsuka et al. 2006; Kinoshita et al. 2009). PtdGlc 

can be hydrolysed in lysoPtdGlc and released into the extracellular environment (Guy et 

al. 2015).  In the embryonic chick and mouse spinal cord, TrkA and TrkC dorsal root 

ganglion axons enter the CNS through the dorsal root entry zone (DREZ). Only TrkC 

axons get into the primordial dorsal funiculus (PDF) where LysoPtdGlc is found (Guy et 

al. 2015), suggesting a possible repulsive role for nociceptive afferences (TrkA). TrkA 

enriched DRG explants showed chemorepulsion in vitro in presence of a lysoPtdGlc 

gradient. Furthermore, blocking antibodies for lysoPtdGlc used in ovo, showed a 

misprojection of TrkA axons in the PDF. Finally, a receptor screening proposed GPR55 

as putative receptor for this extracellular cue. GPR55 knockout mice phenocopy the DRG 

axon misprojections induced by lysoPtdGlc blocking antibodies, confirming the role of this 

receptor-sensing glia released lysoPtdGlc in this system (Guy et al. 2015).

Axonal Regeneration 

In the early 20th century, pioneering studies from Ramón y Cajal showed that the 

mammalian CNS is unable to regenerate following a lesion (Ramón y Cajal 1914). 

Neuroscientists have since delved on the idea that understanding CNS development 

could be the key to hi-jack regenerative mechanisms following CNS injury. Interestingly, 

similar lesion experiments carried out on dorsal root ganglia axons (which belong to the 

PNS) resulted in robust regeneration of their peripheral branch and functional recovery 

following the lesion, whereas their central branch projecting into the CNS did not 

regenerate. Therefore, something either intrinsic or extrinsic to CNS neurons is 
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responsible for their lack of regeneration. This fundamental question has sparked years 

of intensive research to understand the molecular mechanisms activated after axotomy 

and to develop strategies for inducing axonal regeneration. Here, we will discuss some of 

the current approaches and challenges in regeneration of CNS and PNS axons.

Central Nervous System regeneration

Visual system regeneration

Optic nerve (ON) transection or crush, have become a predominant models for studying 

CNS regeneration. The ON only contains axons which originate from RGC neurons in the 

retina. Directly following ON lesions, multiple inhibitory pathways are triggered. The 

Activator Protein 1 (AP1) and the transcription factor subunit c-Jun (Fos-binding protein 

p39) both act in synergy to trigger cell death in RGCs following an experimental axotomy 

(Hüll and Bähr 1994). In addition, interplay between c-Jun and the Activating 

Transcription Factor 2 (ATF2) dictates cell fate following ON crush. When both are 

upregulated, they promote cell survival. However, reduction in ATF2 expression induces 

apoptosis (Martin-Villalba et al. 1998). The activation of c-Jun is driven by calcium influx, 

since specific inhibition of calcium channels leads to reduction of c-Jun activity in ON 

crush models. Remarkably, the inhibition of calcium channels not only reduces acute 

axon neurodegeneration, but also improves axonal regeneration (Ribas et al. 2017). The 

RhoA/ROCK/LIMK pathway, which can be activated by a variety of cytokines and 

inflammatory mediators, is another critical inhibitory mechanism that mediates repulsive 

signals in the injured CNS. The knockdown of either Rho Associated Coiled-Coil 

Containing Protein Kinase 2 (ROCK2) or its downstream substrate LIM domain kinase 1 

(LIMK1) promotes neuronal regeneration following ON crush. However, only ROCK2 

knockdown was found to be neuroprotective in RGCs following ON axotomy (Koch et al. 

2014). ROCK2 downregulation leads to reduced calpain and caspase3 activity and a 

concurrent increase in protein kinase B (Akt) activity (Koch et al. 2014). Pharmacological 

inhibition of RhoA/ROCK pathway through Y-27632 or Fasudil administration promotes 

neuronal regeneration in a dose-dependent manner, probably due to enhanced MAPK 

and Akt phosphorylation (Lingor et al. 2007; Lingor et al. 2008). Pharmacological 

modulation of this pathway, thus, could represent a therapeutic approach for CNS cell 

restoration. 
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Another inhibitory pathway exists in the surrounding environment of the lesion. The 

myelin inhibitory proteins: Nogo, myelin-associated glycoprotein (MAG), and 

oligodendrocyte-myelin glycoprotein (OMgp) suppress axonal growth in the optic nerve 

by acting through Nogo receptors (NgR) where they act in an orchestrated manner with 

other co-receptors, such as p75 neurotrophin receptor and epidermal growth factor 

receptor (EGFR) (Wang et al. 2002b; Wang et al. 2002c; Domeniconi et al. 2002; 

Koprivica 2005). Notably, deletion of its downstream signaling pathway, through protein 

kinase C (PKC) appears to restore axonal growth by blocking Rho activation 

(Sivasankaran et al. 2004). Furthermore, the over-expression of a NgR dominant 

negative in RGCs promoted axonal regeneration (Fischer 2004). 

Alternatively to extrinsic factors inhibiting axon regeneration, many groups have shown 

that the intrinsic mechanisms prevent CNS axon regeneration (He and Jin 2016). One 

critical pathway, put forward by the group of Zhigang He, was the phosphoinositide 3-

kinase (PI3K)/ mammalian target of rapamycin (mTOR) signaling pathway. Following ON 

crush, a dramatic decrease in PI3K/mTOR activity is observed (Park et al. 2008). Indeed, 

following ON crush, mTOR activity is suppressed by the phosphatase and tensin 

homolog (PTEN). Genetically deleting PTEN in RGCs, using an adeno-associated virus, 

induces robust and long-distance axon regeneration following ON crush (Park et al. 

2008). Interestingly, PTEN deletion following ON crush only stimulates the regeneration 

of a subset of RGCs (Park et al. 2008). A large number of RGC types exists with distinct 

physiology and projection patterns (Sanes and Masland 2015; Martersteck et al. 2017). 

Therefore, it is not surprising that distinct RGCs types respond heterogeneously to injury. 

Further studies have shown that a specific subtype of RGCs, the α-RGCs, are able to 

survive following ON crush and express insulin-like growth factor receptor (IGF1) as well 

as osteopontin (OPN) (Duan et al. 2015). Reprogramming of RGCs after injury is 

accompanied by changes in mRNA expression profiles. The transcription factors that are 

expressed after injury appear to determine whether a specific sub-type of RGC will 

regrow. The Kruppel-like factors 4 and 9 (KLF4 and KLF9), for example, play a major role 

suppressing axon development (Qin et al. 2013; Apara et al. 2017). KLF4 interacts with 

Tyr705-phosphorylated signal transducer and activator of transcription 3 (STAT3) 

suppressing its activity and function as an intrinsic barrier for regeneration of damaged 

adult RGC axons (Qin et al. 2013). KLF9 functions as another intrinsic inhibitor for axon A
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regeneration as shRNA mediated knockdown of KLF9 promote RGC survival and axon 

regeneration following optic nerve injury in vivo (Apara et al. 2017). This KLF9-mediated 

inhibition is via interaction of the upstream kinase c-Jun N-terminal kinase 3 (JNK3) 

(Apara et al. 2017). Recent findings indicate that micro RNAs 135a and 135b 

(miRNA135s) could regulate KLF4 expression during axon development. Intravitreal 

administration of miRNA135 induced axon regeneration following ON injury, in part by 

suppressing KLF4 expression in RGCs (van Battum et al. 2018). SOX11, on the other 

hand, plays a dual role. When overexpressed, it can stimulate axon growth of non-α-

RGCs while it induces cell death of α-RGCs following ON crush (Norsworthy et al. 2017). 

In addition to intrinsic growth metabolism, neuroinflammation has been shown to be 

critical for RGCs axonal regeneration (Smith et al. 2009). The simple intraocular injection 

of Zymosan (protein-carbohydrate complexes derived from yeast cell wall), which 

enhances macrophage infiltration in the injured ON, greatly stimulates the expression of 

GAP-43 in RGC axons, resulting in accelerated axonal regeneration (Leon et al. 2000).

During the past decades, major effort has been made towards the development of 

combinatorial therapeutic approaches, targeting two or more neuronal pathways. Over 

stimulating cell growth programs by deleting PTEN and suppressor of cytokine signaling 

3 (SOCS3) promotes a well-sustained axon regeneration, by brake-releasing two 

independent pathways that converge into axon growth-related gene expression (Sun et 

al. 2011). In an alternative approach, the use of the pro-inflammatory Zymosan, in 

combination to PTEN inhibition and cAMP analogue administration promotes axonal 

regeneration, and allows the recovery of long distance axonal degeneration (Kurimoto et 

al. 2010). The critical step following regeneration and functional synapses formation is 

the restoration of the conductance and visual function following injury. Treatment with the 

voltage-gated potassium channel blocker 4-aminopyridine (4-AP) or its methyl derivative 

4-AP-3-Me restores conduction and visual acuity following PTEN/SOCS3 co-deletion. 

Similar phenomena were observed when mice were treated with 4-AP following 

osteopontin (OPN) overexpression in the presence of insulin-like growth factor 1 (IGF1) 

and ciliary neurotrophic factor (CNTF). This highlights the importance of combination 

therapy for axon regeneration and improving visual conduction (Bei et al. 2016). 

Spinal cord regenerationA
cc

ep
te

d
 A

rt
ic

le



This article is protected by copyright. All rights reserved

Another attractive model for studying CNS regeneration is that of Spinal Cord Injury 

(SCI). In addition to its scientific interest, SCI has a dramatic clinical impact, with the 

world health organization approximating between 250,000 to 500,000 people suffer from 

SCI each year (Courtine and Sofroniew 2019). The Cortico spinal neurons (CSNs) 

located in the mammalian neocortex are the major output from the brain to the spinal 

cord (making up to 90% of projections), which mediate both motor and sensory functions 

(Wang et al. 2017). Indeed, Corticospinal Tract (CST) lesions, such as a bilateral 

pyramidotomy, lead to the complete loss of voluntary movement. Following a spinal cord 

lesion, extrinsic mechanisms such as growth inhibitors or glial scars, inhibit axonal 

regeneration (Gaudet and Fonken 2018). Several inhibitory signaling molecules have 

since been identified such as Nogo or myelin-associated glycoproteins (McKeon et al. 

1991; Caroni and Schwab 1988; Afshari et al. 2009; Lang et al. 2015). Indeed silencing 

these inhibitory cues in mouse or rat models of spinal cord injury has shown some 

success (Schmandke et al. 2014). Another approach, led by Zhigang He’s group, 

questioned whether the inability of CNS neurons to regenerate involved intrinsic factors. 

They identified that mTOR (mammalian target of rapamycin) activity and de novo protein 

synthesis are suppressed after CNS lesions (Park et al. 2008). Reactivation of the mTOR 

pathway by silencing of PTEN (phosphatase and tensin homolog) and TSC1 (tuberous 

sclerosis complex 1), leads to extensive CST axon regeneration (Park et al. 2008). 

Together, these findings proved that both intrinsic and extrinsic mechanisms were 

responsible for inhibiting CST axon regeneration after spinal cord injury. Accordingly, the 

combined genetic deletion of Nogo receptors and PTEN, led to a major increase in the 

regeneration and sprouting of lesioned CSNs (Geoffroy et al. 2015). However, there was 

little to no functional amelioration in lesioned animals.

The lack of functional rescue observed in double mutants of Nogo and PTEN led to the 

idea that a better understanding of the locomotor system was required. Indeed, very little 

was known about the localization, development, and function of the CSNs responsible for 

voluntary movement. Using retrograde viral tracing strategies, it was found that CSNs 

were localized in both the motor and somatosensory cortex. Two major nuclei were 

identified, the Rostral Forelimb Area (RFA) and the Caudal Forelimb Area (CFA) (Wang 

et al. 2017). To better understand the precise function of RFA and CFA CSNs in 

voluntary task, a food pellet retrieval task was used to tease apart which CSNs were A
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responsible for specific motor movements. Using AAV:Cre-driven GCamp6 expression in 

CSNs, it was shown that RFA CSNs fired prior to grasping the food-pellet, whereas CFA 

CSNs fired prior to reaching as well as post-grasping the food pellet (Wang et al. 2017). 

This data provide evidence supporting a parallel organization of motor tasks responsible 

for specific behavior organized in a topographic manner. 

While much work has focused on spinal cord lesions, the majority of patients suffer from 

partial lesions. However, partial spinal cord injuries still result in complete loss of motor 

function below the site of injury. This hints towards the idea that unlesioned axons are 

unable to properly function despite being spared from injury. By carrying out a staggered 

hemisection of the thoracic spinal cord on opposing sides, Chen et al. took advantage of 

a partial spinal cord injury model to carry out a small compound screening approach 

(Chen et al. 2018). They identified that an agonist of the potassium/chloride transporter 

(KCC2) resulted in increased weight bearing strength in mice following lesion (Chen et al. 

2018). Due to the complexity of spinal circuits, they questioned whether KCC2 activity 

was required by multiple or distinct neuronal subsets (excitatory, inhibitory, motor). 

Interestingly, only overexpression of KCC2 in inhibitory neurons (Vgat:Cre) resulted in an 

improved weight-bearing strength in injured mice. Moreover, inhibitory neurons below the 

staggered lesion were dispensable for this rescue, since overexpressing KCC2 only in 

inhibitory neurons between the lesions was sufficient to rescue the weight bearing 

strength. Overall, this identifies a crucial role for inhibitory interneurons in a closed-circuit 

to be critical in associating the excitation to inhibition ratio required to regulate functional 

recovery following a lesion (Chen et al. 2018). 

The translation of these findings to the treatment of spinal cord injury, won’t be simple as 

the genetic manipulation of tumor suppressor genes may not be suitable for the clinic. 

Attractive treatment alternatives could consist of applying growth factors (which occur 

endogenously in the CNS). However, adult CNS neurons lose their sensitivity to growth 

factors such as BDNF (Liu et al. 2017). Moreover, adult CSNs treated with OPN can be 

sensitized to the IGF1 by reactivating the mTOR pathway (Liu et al. 2017).

Furthermore, the identification that spared axons following partial spinal cord injury could 

be re-synchronized to induce functional recovery opens many questions, one of which, is 

the importance of inhibitory synapses conserved amongst other species. Indeed, the A
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complexity in human spinal cord circuitry may pose a major challenge towards this 

clinical implication.

For instance, how does our current understanding on excitatory/inhibitory ratios in the 

rodent spinal cord translate to the human spinal cord? This is a daunting question since 

inhibitory feedback loops in human spinal cord may be more complex and thus more 

challenging to re-stimulate. Furthermore, more research should focus on understanding 

the coordinated action between neurons and glial cells. Synaptic activity, axonal and 

dendritic growth and regeneration are fine-tuned by glial cells (Liu et al. 2017). There are 

a few studies investigating how glial scar-induced disruption may be overcome by 

improving the communication between neurons and glial cells. Of note, exosomes 

released by glial cells in the PNS have shown to promote robust axonal regeneration and 

survival (Lopez-Leal and Court 2016). A similar result was obtained from mesenchymal 

stem cells releasing exosomes following spinal cord injury (Liu et al. 2019; Li et al. 2018). 

Peripheral Nerve Regeneration

Insults such as physical trauma, chemotherapy or metabolic disorders can lead to 

peripheral nerve damage (Scholz et al. 2009). As previously mentioned, PNS axons have 

retained considerable capacity to regenerate following injury and to form functional 

connections with their original targets (Bremer et al. 2017). This seems in part due to a 

cell-intrinsic growth-promoting response of PNS neurons and to a favorable environment 

for axonal regeneration (Bremer et al. 2017). However, many aspects of this process, 

including how regenerating axons navigate across the lesion site and select their original 

trajectory at branch choice points, are not well understood in vivo. Whilst many animal 

models have been used to study PNS regeneration, the zebrafish has been heavily 

studied due to its transparency (allowing for in vivo live imaging) as well as the ability for 

genetic manipulation. Adult and larval fish both have well-defined PNS circuits and 

stereotyped behaviors, facilitating cell biology studies underlying PNS axon regrowth and 

synapse re-establishment (Rasmussen and Sagasti 2017; He and Jin 2016). 

In vertebrates, spinal motor nerve degeneration after transection occurs through 

morphological hallmarks characteristic of Wallerian degeneration (figure 6A), a 

stereotyped form of degeneration (Waller 1851). Live imaging on zebrafish showed that 

following nerve transection, degradation of the distal axon happens within 120-240 A
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minutes (Rosenberg et al. 2012). Moreover, it highlighted that individual axons within the 

transected nerves initiate fragmentation at different times independent of myelination and 

thickness of the axons. Once initiated, fragmentation occurs along the entire length of the 

axon within minutes. Recruitment of macrophages to the injury site starts between 60-

120 minutes before nerve fragmentation, and with the onset of axonal fragmentation, 

macrophages enter the nerve and begin to phagocytose nerve debris. Experimental 

elimination of Schwann cells through genetic ablation does not change the recruitment 

and behavior of macrophages to the injury site suggesting that this process is 

independent on Schwann cells (Dutton et al. 2001; Rosenberg et al. 2012). 

In zebrafish, 80% of regenerating axons retain the ability to select their original branch-

specific trajectory in both ventral and dorsal nerve branches following complete nerve 

transection (Isaacman-Beck et al. 2015). After complete nerve transection, usually a 

single axon emerges from the proximal nerve stump to pioneer a regenerative path 

across the injury site. At later stages, multiple emerging axons join the pioneering axon 

and extend with about twice the speed of the pioneering axon across the injury gap. The 

synaptic low-density lipoprotein receptor-related protein 4 (lrp4) is critical for the regrowth 

of follower axons across the injury gap and towards their original targets (Gribble et al. 

2018)(figure 6C). Live-cell imaging shows that Schwann cells provide directionality to 

axons, by crossing the injury site and navigating to their original trajectory. An interaction 

between Schwann cells and motor axons is triggered following motor nerve transection 

leading to highly coordinated changes in axonal and Schwann cell morphology during 

both degeneration and regeneration (figure 6B). For instance, once axons start to 

fragment, Schwann cell membranes, localized distal to the lesion site, undergo dramatic 

morphological changes returning to a more immature state (Rosenberg et al. 2014). Lrp4 

promotes the morphological changes associated with Schwann cells re-differentiation 

after injury-induced de-differentiation. In vivo evidence suggests that lrp4 promotes 

peripheral nerve regeneration through a non-canonical, Agrin/MuSK independent 

signalling pathway that is critical for neuromuscular synapse development in mammals 

and zebrafish (Gribble et al. 2018). The importance of this process in promoting 

vertebrate nerve regeneration is also confirmed by the impairment of peripheral nerve 

regeneration by Topoisomerase I inhibitor, identified through a fin removal assay 
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performed by Bremer and colleagues, which hypothesizes that Topoisomerase I 

promotes peripheral nerve regeneration by regulating gene transcription specifically in 

de-differentiated Schwann cells (Bremer et al. 2017). 

In zebrafish mutants lacking Schwann cells, 50–80% of transected nerves show a failure 

in regenerating axons along their original trajectory through the ventral myotome 

compared with 20% in wild-type (Rosenberg et al. 2014). Netrin1 and its receptor DCC 

have been implicated in promoting the extent of axon regeneration (figure 6C): in vivo 

Netrin1b mRNA is expressed in Schwann cells before and after motor nerve transection, 

and dcc mRNA is detectable in motor neurons during initial axonal regrowth. In 

dcczm130198 mutants, characterized by a 90% reduction of dcc mRNA, 40% of 

regenerating motor axons extended not only along their original path but also along 

ectopic lateral trajectories. This suggests that DCC is required to guide regenerating 

ventral motor axons across the injury gap toward their original trajectory in vivo 

(Rosenberg et al. 2014). 

Early after transection (7-11 hours post transection), dorsal axons sprout growth cones 

that explore the environment with multi-directional extensions and retractions. In the 

following 2-4 hours, only the growth cones extending along the correct dorsal path are 

stabilized and quickly extend, supporting the existence of extrinsic cues that drive the 

growth cones through the branch point (Isaacman-Beck et al. 2015). Among these cues, 

the collagen-modifying glycosyltransferase lysyl hydroxylase 3 (lh3), expressed by 

Schwann cells, has a crucial role in promoting target selectivity of regenerating dorsal, 

but not ventral nerve axons (figure 6B). For this process, equally fundamental is 

Collagen4a5 (col4a5), the lh3 substrate, which is over expressed in a small group of 

Schwann cells located ventral and ventrolaterally to the transection gap. Col4a5 

destabilizes mistargeted axons, directing regenerating axons toward their original targets. 

Following the nerve transection there is an upregulation of the canonical axon guidance 

repellent slit1a in cells expressing col4a5. Hypothetically, in response to injury, Schwann 

cells ventral to the transection site, secrete col4a5, which binds and accumulates Slit, 

thereby forming a repulsive barrier to direct dorsal axons onto their original dorsal path 

(Isaacman-Beck et al. 2015)(figure 6C). 
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Real-time imaging on live zebrafish has allowed deciphering some of the intrinsic and 

extrinsic mechanisms responsible for peripheral nerve regeneration, but the molecular 

mechanisms and the specific cellular interactions which are vital for axon regeneration 

are not completely understood. Furthermore, the identification of other regeneration-

promoting molecules could allow the development of new neuronal repair strategies. 

Based on that premise a fin removal assay was developed that enabled to perform the 

first whole organism small molecule screen to identify pathways that promote vertebrate 

nerve regeneration (Bremer et al. 2017). The approach utilized the regeneration of the 

ring-like nerve of zebrafish larvae pectoral fin after removal as readout of axonal 

regrowth. 480 bioactive compounds with known biological targets were screened to 

identify molecular pathways promoting nerve regrowth. After excluding 134 compounds 

which affected larvae health, the remaining compounds were combined in 69 distinct 

pools and added each of these pool to larvae immediately following fin amputation to 

evaluate the re-formation of regenerating axons of a ring-like nerve network at the fin 

base that normally occurs in 24 hours. In larvae exposed to 15 pools regenerating axons 

failed to form the characteristic ring-like network. Next, each of the compounds was 

tested within a given pool individually. This failed to identify a singly effective compound 

in 20% of pools which reduced nerve regrowth in the first pass of the screen. Despite the 

fin removal assay is a powerful screening method to study nerve regeneration, the high 

false positive rate indicates the importance of a second method to confirm the results.

Other strategies for CNS/PNS repair

Many strategies have shown incredible potential for regeneration of the CNS following an 

injury, but a major concern remains the significant death of neurons (Ling et al. 2015; 

Mckee and Daneshvar 2015). Moreover, complex diseases such as stroke, amyloid-β 

plaque accumulation and inflammatory-mediated neurodegeneration lead to broad 

defects such as defective communication, glial scar formation and ultimately neuronal 

loss, which make it challenging to repair (Albrecht et al. 2015; Chauhan 2014). In such 

cases, the development of cell therapy has shown some promising results (Gates et al. 

2000). Stem cell manipulation is a powerful tool to understand neurodevelopment and its 

integration into developing tissue can recapitulate neurogenesis. In vivo strategies based 

on stem cell replacement such as human and mice-derived embryonic stem cells (ESCs) A
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for brain repair in models of neurological diseases, have made significant progress in pre-

clinical trials (Barker et al. 2015; Péron et al. 2017). It is known that the lack of 

endogenous repair in the brain leads to a condition of life-long disease and disability after 

a neuronal damage. Thus, understanding how well the transplanted neurons are able to 

mature and integrate into damaged circuits is a challenging task.

Due to the complexity of the organization of the cerebral cortex in terms of highly specific 

topography and connectivity (Guillemot et al. 2006; Tiberi et al. 2012), the replacement of 

lost neurons is a daunting challenge. A notable initial attempt at regenerative cortical cell 

therapy showed that transplanting embryonic cortical tissue from transgenic mice to 

lesioned cortex in an adult brain could regenerate neurons and establish neuronal 

projections and synaptic connections (Gaillard et al. 2007; Wernig 2004). These findings 

have been corroborated by data from other studies which have shown that not only ESCs 

have intrinsic mechanisms of corticogenesis (Gaspard et al. 2008) but induced 

pluripotent stem cell (iPSC)-derived neurons also can regenerate functional cortical 

neurons (Espuny-Camacho et al. 2018; Falkner et al. 2016). 

There are certain prerequisites for the ESCs to successfully integrate the malfunctioning 

adult cortex. Re-establishment of neuronal connectivity and function requires identity 

match between the damaged brain area and the transplanted material (Michelsen et al. 

2015). Human embryonic stem cell (hESC)-derived visual cortical neurons, once grafted 

into the lesioned adult murine cortex, are able to mature and integrate into the 

corresponding cortical layers, acquiring a visual-like identity and rewiring the circuit with 

appropriate inputs and outputs (Espuny-Camacho et al. 2018). Interestingly, hES-derived 

cells transplanted into motor cortical areas showed a reduced maturation and a lower 

capacity to send long-range projections, suggesting that the areal identity match 

represents an important factor for successful cortical transplantation.

Another key factor accompanying identify match, is the adaptation to the extrinsic in vivo 

environment to establish polarity, such as microenvironment generated by blood vessels 

(Javaherian and Kriegstein 2009) or composition of extracellular matrix (Fietz et al. 

2012). Context-wise, junctional complexes block the incorporation of grafted cells at the 

apical surface (Espuny-Camacho et al. 2013). For this reason, a new grafting method 

called TETCaD (transplantation to epithelial tissue with calcium depletion) has been A
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developed, using moderate concentrations of EGTA (ethylene glycol tetra-acetic acid) to 

chelate calcium, increasing efficiency of transplantation and dissociating adherents 

junctions in the epithelial tissue (Nagashima et al. 2014). Lastly in the molecular level, 

lesion site-specific cues and signalling pathways such as the WNT signalling and 

NOTCH2NL genes have been implicated in human corticogenesis (Fiddes et al. 2018; 

Raitano et al. 2015; Suzuki et al. 2018). In vitro and in vivo use of iPSCs in animal 

models simulating human diseases such as stroke (Tornero et al. 2013), Alzheimer's 

disease (AD) (Espuny-Camacho et al. 2017) and multiple sclerosis (MS) (Theotokis et al. 

2015), highlight the hallmarks of synaptic activity, connectivity and cortical neuronal 

maturation (Suzuki and Vanderhaeghen 2015). Specifically for AD, the significant 

expression of non- coding RNA sequences in grafted human neurons further opens up an 

entirely new avenue for investigating the involvement of non-coding RNAs in AD-induced 

neurodegeneration.

Altogether, establishing the molecular mechanisms regulating fate acquisition and 

plasticity after cell transplantation is of great importance in the light of preclinical studies. 

Determining which cues are involved in fate maintenance, area specificity and functional 

integration in the adult brain will be pivotal for successful outcomes in stem cell-based 

therapies. These signaling events may also play major roles in neurodegeneration so 

targeting pathways such as the Wnt pathway, may result in the establishment of novel 

therapeutic approaches. Nonetheless, potential adverse effects and host-transplant 

compatibility should be addressed before these approaches can be considered for clinical 

applications. 
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Figure 1: Sema3C controls midline crossing in the developing corpus callosum 

A – The role of semaphorin in midline crossing in the corpus callosum has been recently 

elucidated. Sema3C is expressed in a gradient across the callosal midline. It binds the 

Nrp1 receptor on callosal axon growth cones (B) acting as an attractive cue,. C – The 

Sema3C/Nrp1 complex is silenced by the presence of trans-membrane protein ephrinB1. 

This requires an N-Glycan post-traductional modification of ephrinB1. Ctx: cortex; CC: 

corpus callosum; AC: anterior commissure; CCA: corpus callosum axon. 

Figure 2: Retinal ganglion cells development and their pathfinding at the optic 
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A – In the developing visual system, retinal ganglion cells (RGCs) project from the retina 

to the brain nuclei. During this process, some RGC axons cross the midline at the optic 

chiasm. B – RGCs projecting towards the contra or ipsilateral side are already specified 

in the retina by two sets of transcription factors: SoxC and Islet2 in contralateral RGCs 

and Zic2 in ipsilateral RGCs. The Sonic hedgehog (Shh) receptor Boc, is also expressed 

by ipsilateral RGCs. C – These two different combinations allow the expression of 

guidance effectors, regulating the pathfinding choices at the optic chiasm. Moreover, 

Islet2 is also blocking the expression of Zic2 and Boc expression in contralateral RGCs. 

D – The optic chiasm is the intermediate target where contralateral RGCs (green) project 

towards the contralateral side of the CNS whereas ipsilateral RGCs (red) follow the visual 

tract on their original side. Shh, transported by the contra-lateral RGCs (grey), is released 

at the optic chiasm. Ipsi-lateral RGCs expressing the transmembrane receptors Boc as 

well as EphB1 are repelled by Shh and ephrinB2 at the optic chiasm. An attraction of 

contralateral RGCs to the midline is mediated by the cell adhesion molecule NrCAM and 

transmembrane semaphorin Sema6D, through their interaction with NrCAM and the 

complex PlexinA1-Neuropilin2. RG: radial glia

Figure 3: Spinal cord commissural axons development: pre and post-crossing 

guidance mechanisms

A – Commissural axons arise from the dorsal portion of the spinal cord. To cross the 

midline, they first have to be guided to the floor plate. This first process involves several 

guidance receptors that trigger the axon outgrowth towards the ventral midline. B – Pre-

crossing axons express the Roundabout 3 (Robo3) receptor. Robo3 interacts with 

deleted in colorectal cancer (Dcc) receptor and both promote axon extension to the floor 

plate in response to Netrin-1. Netrin-1 was first thought to act as long-range cue but 

recent studies suggest that it acts as short-range cue. Robo3 might also prevent Slit 

repulsion by interacting with the Robo1/2 receptors. C – Moreover, in pre-crossing 

commissural axons, the presence of calpain induces a cleavage of the PlexinA1 receptor, 

inactivating this repulsive signalling pathway. D – After midline crossing, commissural 

axons switch from midline attraction to repulsion. They become sensitive to repulsive 

cues secreted by floor plate cells which prevent midline re-crossing. Axon then start to A
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extend rostrally towards their final targets. E – At the floor plate, Robo3 is down-

regulated, and Robo1/2 interaction with Slits blocks the Dcc-Netrin-1 attractive signalling. 

F – In addition, the expression of Gdnf by floor plate cells inhibits calpain activity on 

crossing fibres, allowing PlexinA1 to reach the membrane where it interacts with 

Neuropilin2, where this receptor complex triggers midline repulsion upon binding 

Sema3B. 

Figure 4: Cortical folding relies on FLRTs expression 

Cortical folding appears to be dependent on the presence of the cell adhesion proteins 

FLRT1 and FLRT3 during cortical expansion, where (A) higher expression in migrating 

cortical progenitors is associated with parallel migration, resulting in a lissencephalic 

cortex. Conversely, (B) lower FLRT1 and 3 expression favors lower migration rates, and 

promotes lateral adhesion resulting in a gyrencephalic cortex.

Figure 5: Molecular mechanisms for CNS regeneration

A – After CNS injury, extrinsic and intrinsic mechanisms impair axonal regeneration. 

These events occur both in the cell soma and the injure site and they are the main 

targets of strategies aiming at promoting regeneration.  Most of the extrinsic inhibition 

comes from the recruitment of astrocytes and macrophages to the injury area and the 

“activation” of local oligodendrocytes. B – In injured neurons, Pten blocks the mTOR 

pathway that induces axon regeneration. The complete or conditional depletion of Pten in 

RGCs or CST neurons, promotes the regeneration of their axons after injury. C – 

Moreover, oligodendrocytes at the lesion site, start to express inhibitory signalling 

molecules such as Nogo and myelin associated glycoproteins that will block axonal 

regeneration. The simultaneous depletion of Pten and Nogo, significantly promotes 

axonal regeneration. D – Finally, The expression of cytokines by macrophages also 

promote axon outgrowth. SOCS3 expression in lesioned axons blocks STAT3, a 

downstream effector of this cascade. Together with Pten, the depletion of SOCS3 also 

increases the regeneration rate of RGC axons. 
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Figure 6: PNS axon regeneration in zebrafish spinal motor nerves 

A – Zebrafish has extensively been used as PNS regeneration model. Its transparency 

allows live-imaging of axons and genetic manipulations remain simpler than in mammals. 

In this model, a transection of both, dorso-ventral spinal cord motor branches is 

performed. First, a Wallerian degeneration of the sectioned nerves occurs, dependent on 

macrophages activity. Then, spontaneous regeneration occurs, promoted by intrinsic and 

extrinsic signals. B – After injury, 80% of the lesioned axons retain the ability to 

regenerate. This relies on Schwann cell activation that will ensure the proper pathfinding 

of the regenerating axons through different mechanisms. This activation occurs by 

exposure to ∆Lrp4 and triggers the expression of axon guidance molecules (Netrin-1 and 

Slit1a) and the remodelling of the extracellular matrix (ECM). C – There is evidence that 

nerve regrowth relies on the extension of a single pioneer axon that will be used as 

migration scaffold by follower axons.  This process seems dependent on ∆Lrp4 but no 

receptors have been identified yet. Axon guidance of dorsal or ventral projections differs. 

Netrin-1 and Dcc promotes the growth of ventral axons while Slit1a prevent dorsal axon 

from growing dorsally, through a yet unknown receptor. 

Figure 7: Cell therapy

A – Strategies based on stem cell replacement such as human- and mouse-derived 

embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSC)-derived 

neurons.  Grafting iPSC-derived neurons in brain circuits requires (B) adaptation to the 

extrinsic in vivo microenvironment or composition of extracellular matrix, lesion site-

specific cues and signalling pathways, and identity match between the damaged brain 

area and the transplanted material. C – Transplanted neurons could mature and integrate 

into damaged circuits; however, potential adverse effects as tumors or neuron death 

should be addressed before these strategies are transferred to the clinic. 
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