270 research outputs found
Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.
Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account
Rapid Detection of Chlamydia trachomatis and Typing of the Lymphogranuloma venereum associated L-Serovars by TaqMan PCR
<p>Abstract</p> <p>Background</p> <p>Infection due to <it>Chlamydia trachomatis </it>is the most common sexually transmitted bacterial disease of global health significance, and especially the L-serovars causing lymphogranuloma venereum are increasingly being found in Europe in men who have sex with men.</p> <p>Results</p> <p>The design and evaluation of a rapid, multiplex, real-time PCR targeting the major outer membrane protein (<it>omp-1</it>) -gene and a L-serovar-specific region of the polymorphic protein H (<it>pmp-H</it>) -gene for the detection of <it>Chlamydia trachomatis </it>is reported here. The PCR takes place as a single reaction with an internal control. For L1-, L2- and L3-serovar differentiation a second set of real-time PCRs was evaluated based on the amplification of serovar-specific <it>omp-1</it>-regions. The detection limit of each real-time PCR, multiplexed or not, was 50 genome copies per reaction with an efficiency ranging from 90,5–95,2%.</p> <p>In a retrospective analysis of 50 ocular, rectal and urogenital specimens formerly tested to be positive for <it>C. trachomatis </it>we identified six L2-serovars in rectal specimens of HIV-positive men, one in a double-infection with L3, and one L2 in a urethral specimen of an HIV-negative male.</p> <p>Conclusion</p> <p>This unique real-time PCR is specific and convenient for the rapid routine-diagnostic detection of lymphogranuloma venereum-associated L-serovars and enables the subsequent differentiation of L1, L2 and L3 for epidemiologic studies.</p
Effects of Recombinant Human Interleukin 7 on T-Cell Recovery and Thymic Output in HIV-Infected Patients Receiving Antiretroviral Therapy: Results of a Phase I/IIa Randomized, Placebo-Controlled, Multicenter Study
Interleukin 7 induces a well-tolerated, dose-dependent, and sustained increase of CD4 T cells in human immunodeficiency virus-infected individuals treated with antiretroviral therapy, through an expansion of peripheral T cells that do not express activation markers, and increases thymic output in some patients
Importance of Coverage and Endemicity on the Return of Infectious Trachoma after a Single Mass Antibiotic Distribution
Trachoma, caused by ocular chlamydia infection, is the most common infectious cause of blindness in the world. The World Health Organization (WHO) recommends the SAFE strategy (eyelid surgery, antibiotics, facial hygiene, environmental improvements) for trachoma control. Oral antibiotics reduce the transmission of ocular chlamydia, but re-infection of treated individuals is common. Therefore, the WHO recommends annual mass antibiotic treatments to the entire village. The success of treatment is likely based on many factors, including the antibiotic coverage, or percentage of villagers who receive antibiotics. However, no studies have analyzed the importance of antibiotic coverage for the reduction of ocular chlamydia. Here, we performed multivariate regression analyses on data from a clinical trial of mass oral antibiotics for trachoma in a severely affected area of Ethiopia. At the relatively high levels of antibiotic coverage in our study, coverage was associated with post-treatment infection at two months, but not at six months. The amount of infection at baseline was strongly correlated with post-treatment infection at both two and six months. These results suggest that in areas with severe trachoma treated with relatively high antibiotic coverage, increasing coverage even further may have only a short-term benefit
Designing a broad-spectrum integrative approach for cancer prevention and treatment
Targeted therapies and the consequent adoption of "personalized" oncology have achieved notablesuccesses in some cancers; however, significant problems remain with this approach. Many targetedtherapies are highly toxic, costs are extremely high, and most patients experience relapse after a fewdisease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistantimmortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are notreliant upon the same mechanisms as those which have been targeted). To address these limitations, aninternational task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspectsof relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a widerange of high-priority targets (74 in total) that could be modified to improve patient outcomes. For thesetargets, corresponding low-toxicity therapeutic approaches were then suggested, many of which werephytochemicals. Proposed actions on each target and all of the approaches were further reviewed forknown effects on other hallmark areas and the tumor microenvironment. Potential contrary or procar-cinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixedevidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of therelationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. Thisnovel approach has potential to be relatively inexpensive, it should help us address stages and types ofcancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for futureresearch is offered
Novel mutations in TLR genes cause hyporesponsiveness to Mycobacterium avium subsp. paratuberculosis infection
<p>Abstract</p> <p>Background</p> <p>Toll like receptors (TLR) play the central role in the recognition of pathogen associated molecular patterns (PAMPs). Mutations in the TLR1, TLR2 and TLR4 genes may change the ability to recognize PAMPs and cause altered responsiveness to the bacterial pathogens.</p> <p>Results</p> <p>The study presents association between TLR gene mutations and increased susceptibility to <it>Mycobacterium avium </it>subsp. <it>paratuberculosis </it>(MAP) infection. Novel mutations in TLR genes (TLR1- Ser150Gly and Val220Met; TLR2 – Phe670Leu) were statistically correlated with the hindrance in recognition of MAP legends. This correlation was confirmed subsequently by measuring the expression levels of cytokines (IL-4, IL-8, IL-10, IL-12 and IFN-γ) in the mutant and wild type moDCs (mocyte derived dendritic cells) after challenge with MAP cell lysate or LPS. Further <it>in silico </it>analysis of the TLR1 and TLR4 ectodomains (ECD) revealed the polymorphic nature of the central ECD and irregularities in the central LRR (leucine rich repeat) motifs.</p> <p>Conclusion</p> <p>The most critical positions that may alter the pathogen recognition ability of TLR were: the 9<sup>th </sup>amino acid position in LRR motif (TLR1–LRR10) and 4<sup>th </sup>residue downstream to LRR domain (exta-LRR region of TLR4). The study describes novel mutations in the TLRs and presents their association with the MAP infection.</p
- …