1,258 research outputs found

    A cryogenically cooled, multidetector spectrometer for infrared astronomy

    Get PDF
    A liquid helium-cooled, 24 detector grating spectrometer was developed and used for low resolution astronomical observations in the 5 to 14 micron spectral range. The instrument operated on the 91 cm Kuiper Airborne Observatory, the 3 m IRTF (Mauna Kea), the 3 m Shane telescope Observatory, the 3 m Shane telescope (Lick Observatory), and the 152 cm NASA and University of Arizona telescope. The detectors are discrete Si:Bi photoconductors with individual metal oxide semiconductor field effect transistor preamplifiers operating at 4 K. The system uses a liquid helium-cooled slit, order-sorter filter, collimator mirror, grating, and camera mirror arranged in a Czerny-Turner configuration with a cold stop added between the collimator mirror and the grating. The distances between components are chosen so that the collimator mirror images the secondary mirror of the telescope onto the cold stop, thus providing a very effective baffle. Scattered radiation is effectively reduced by using liquid helium-cooled, black baffles to divide the spectrometer into three separate compartments. The system noise-equivalent flux density, when used on the 152 cm telescope from 8 to 13 microns with a resolving power of 50, is 4.4 x 10 to the minus 17th power W/sq cm micron square root of Hz. The main applications are for measuring continuum radiation levels and solid state emission and absorption features in regions of star and planet formation

    Low-background performance of a monolithic InSb CCD array

    Get PDF
    A 20 element monolithic InSb charge coupled device (CCD) detector array was measured under low background conditions to assess its potential for orbital astronomical applications. At a temperature of 64 K, previous results for charge transfer efficiency (CTE) were reproduced, and a sensitivity of about 2 x 10 to the minus 15th power joules was measured. At 27 and 6 K, extended integration times were achieved, but CTE was substantially degraded. The noise was approximately 6000 charges, which was in excess of the level where statistical fluctuations from the illumination could be detected. A telescope demonstration was performed showing that the array sensitivity and difficulty of operation were not substantially different from laboratory levels. Ways in which the device could be improved for astronomical applications were discussed

    The 2.5-5.0 micron spectra of Io: Evidence for H2S and H2O frozen in SO2

    Get PDF
    The techniques of low temperature spectroscopy are applied to identify the constituents of the ices covering the surface of Io, a satellite of Jupiter. Infrared spectra of Io in the 4000-2000 cm exp -1 region, including new observational data, are analyzed using laboratory studies of plausible surface ices

    A multicomponent model of the infrared emission from Comet Halley

    Get PDF
    A model based on a mixture of coated silicates and amorphous carbon grains produces a good spectral match to the available Halley data and is consistent with the compositional and morphological information derived from interplanetary dust particle studies and Halley flyby data. The dark appearance of comets may be due to carbonaceous coatings on the dominant (by mass) silicates. The lack of a 10 micrometer feature may be due to the presence of large silicate grains. The optical properties of pure materials apparently are not representative of cometary materials. The determination of the optical properties of additional silicates and carbonaceous materials would clearly be of use

    Infrared spectra of WC10 planetary nebulae nuclei

    Get PDF
    The 5.2 to 8.0 micron spectra are presented for two planetary nebulae nuclei Hen1044 (He2-113) and CPD-56 8032. The unidentified infrared (UIR) emission bands at 6.2 microns, 6.9 microns, 7.7 microns are present in the spectra of Hen1044 and in CPD-56 8032, and the 8.6 micron band is present in the long wavelength shoulder of the 7.7 micron band in the spectrum of CPD-56 8032. The 8 to 13 micron spectra of these two stars by Aitken et. al. clearly show the presence of the 8.6 micron band in He2-113 while weakly resolving this feature in the spectra of CPD-56 8032. In their spectra the 11.3 micron band is also clearly detected in both objects. The 6.2 micron and 7.7 micron bands are characteristic of the infrared active C-C stretching modes in polycyclic aromatic hydrocarbons (PAHs); the 3.3 micron, 8.6 micron, and 11.3 micron bands are respectively assigned to the in-plane stretching mode, the in-plane bending mode, and the out-of-plane bending mode of the aromatic CH bond. The weak 6.9 micron emission feature is attributed to the UIR spectrum by Bregman et. al. The IRAS LRS spectra of He2-113 (IRAS 14562-5406) and CPD-56 8032 (IRAS 17047-5650) are presented. Cohen et. al. identify the broad plateau from 11.3 to 13.0 microns in the spectrum of He2-113 with increased hydrogenation of PAHs. This broad plateau is not seen in the LRS spectrum of CPD-56 8032. Also, He2-113 has greater infrared excess emission in the 17-22 micron region than does CPD-56 8032

    Fast Primal-Dual Gradient Method for Strongly Convex Minimization Problems with Linear Constraints

    Full text link
    In this paper we consider a class of optimization problems with a strongly convex objective function and the feasible set given by an intersection of a simple convex set with a set given by a number of linear equality and inequality constraints. A number of optimization problems in applications can be stated in this form, examples being the entropy-linear programming, the ridge regression, the elastic net, the regularized optimal transport, etc. We extend the Fast Gradient Method applied to the dual problem in order to make it primal-dual so that it allows not only to solve the dual problem, but also to construct nearly optimal and nearly feasible solution of the primal problem. We also prove a theorem about the convergence rate for the proposed algorithm in terms of the objective function and the linear constraints infeasibility.Comment: Submitted for DOOR 201

    Spectral structure near the 11.3 micron emission feature

    Get PDF
    If the 11.3 micron emission feature seen in the spectra of many planetary nebulae, H II regions, and reflection nebulae is attributable to polycyclic aromatic hydrocarbons (PAHs), then additional features should be present between 11.3 and 13.0 microns. Moderate resolution spectra of NGC 7027, HD 44179, BD+30 deg 3639, and IRAS 21282+5050 are presented which show evidence for new emission features centered near 12.0 and 12.7 microns. These are consistent with an origin from PAHs and can be used to constrain the molecular structure of the family of PAHs responsible for the infrared features. There is an indication that coronene-like PAHs contribute far more to the emission from NGC 7027 than to the emission from HD 44179. The observed asymmetric profile of the 11.3 micron band in all the spectra is consistent with the slight anharmonicity expected in the C-H out-of-plane bending mode in PAHs. A series of repeating features between 10 and 11 microns in the spectrum of HD 44179 suggests a simple hydride larger than 2 atoms is present in the gas phase in this object
    • …
    corecore