11,548 research outputs found

    Pulse Control of Decoherence in a Qubit Coupled with a Quantum Environment

    Full text link
    We study the time evolution of a qubit linearly coupled with a quantum environment under a sequence of short pi pulses. Our attention is focused on the case where qubit-environment interactions induce the decoherence with population decay. We assume that the environment consists of a set of bosonic excitations. The time evolution of the reduced density matrix for the qubit is calculated in the presence of periodic short pi pulses. We confirm that the decoherence is suppressed if the pulse interval is shorter than the correlation time for qubit-environment interactions.Comment: 5 pages, 2figure

    Universal Leakage Elimination

    Full text link
    ``Leakage'' errors are particularly serious errors which couple states within a code subspace to states outside of that subspace thus destroying the error protection benefit afforded by an encoded state. We generalize an earlier method for producing leakage elimination decoupling operations and examine the effects of the leakage eliminating operations on decoherence-free or noiseless subsystems which encode one logical, or protected qubit into three or four qubits. We find that by eliminating the large class of leakage errors, under some circumstances, we can create the conditions for a decoherence free evolution. In other cases we identify a combination decoherence-free and quantum error correcting code which could eliminate errors in solid-state qubits with anisotropic exchange interaction Hamiltonians and enable universal quantum computing with only these interactions.Comment: 14 pages, no figures, new version has references updated/fixe

    Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    Get PDF
    Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation

    Measurement of the Transverse Polarization of Electrons Emitted in Free Neutron Decay

    Full text link
    Both components of the transverse polarization of electrons emitted in the beta-decay of polarized, free neutrons have been measured. The T-odd, P-odd correlation coefficient quantifying the component perpendicular to the decay plane defined by neutron polarization and electron momentum, was found to be R=0.008 +/- 0.015 +/-0.005. This value is consistent with time reversal invariance, and significantly improves limits on the relative strength of imaginary scalar couplings in the weak interaction. The value obtained for the correlation coefficient associated with the electron polarization component contained within the decay plane N=0.056 +/- 0.011 +/- 0.005, agrees with the Standard Model expectation, providing an important sensitivity test of the experimental setup.Comment: 4 pages, 4 figure

    Conceptualizing throughput legitimacy: procedural mechanisms of accountability, transparency, inclusiveness and openness in EU governance

    Get PDF
    This symposium demonstrates the potential for throughput legitimacy as a concept for shedding empirical light on the strengths and weaknesses of multi-level governance, as well as challenging the concept theoretically. This article introduces the symposium by conceptualizing throughput legitimacy as an ‘umbrella concept’, encompassing a constellation of normative criteria not necessarily empirically interrelated. It argues that in order to interrogate multi-level governance processes in all their complexity, it makes sense for us to develop normative standards that are not naïve about the empirical realities of how power is exercised within multilevel governance, or how it may interact with legitimacy. We argue that while throughput legitimacy has its normative limits, it can be substantively useful for these purposes. While being no replacement for input and output legitimacy, throughput legitimacy offers distinctive normative criteria— accountability, transparency, inclusiveness and openness— and points towards substantive institutional reforms.Published versio

    Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics

    Full text link
    Modern gas detectors for detection of particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements.Comment: 38 pages, 9 figures, 8 tables. To be submitted to Journal of Instrumentatio

    Candidate eco-friendly gas mixtures for MPGDs

    Get PDF
    Modern gas detectors for detection of particles require F-based gases for optimal performance.Recent regulations demand the use of environmentally unfriendly F-based gases t o be limited or banned. This review studies properties of potential eco-friendly gas candidate replacements

    A ferrofluid based neural network: design of an analogue associative memory

    Full text link
    We analyse an associative memory based on a ferrofluid, consisting of a system of magnetic nano-particles suspended in a carrier fluid of variable viscosity subject to patterns of magnetic fields from an array of input and output magnetic pads. The association relies on forming patterns in the ferrofluid during a trainingdphase, in which the magnetic dipoles are free to move and rotate to minimize the total energy of the system. Once equilibrated in energy for a given input-output magnetic field pattern-pair the particles are fully or partially immobilized by cooling the carrier liquid. Thus produced particle distributions control the memory states, which are read out magnetically using spin-valve sensors incorporated in the output pads. The actual memory consists of spin distributions that is dynamic in nature, realized only in response to the input patterns that the system has been trained for. Two training algorithms for storing multiple patterns are investigated. Using Monte Carlo simulations of the physical system we demonstrate that the device is capable of storing and recalling two sets of images, each with an accuracy approaching 100%.Comment: submitted to Neural Network

    Inverted spectroscopy and interferometry for quantum-state reconstruction of systems with SU(2) symmetry

    Full text link
    We consider how the conventional spectroscopic and interferometric schemes can be rearranged to serve for reconstructing quantum states of physical systems possessing SU(2) symmetry. The discussed systems include a collection of two-level atoms, a two-mode quantized radiation field with a fixed total number of photons, and a single laser-cooled ion in a two-dimensional harmonic trap with a fixed total number of vibrational quanta. In the proposed rearrangement, the standard spectroscopic and interferometric experiments are inverted. Usually one measures an unknown frequency or phase shift using a system prepared in a known quantum state. Our aim is just the inverse one, i.e., to use a well-calibrated apparatus with known transformation parameters to measure unknown quantum states.Comment: 8 pages, REVTeX. More info on http://www.ligo.caltech.edu/~cbrif/science.htm
    • 

    corecore