8,133 research outputs found
Effects of Defects on Friction for a Xe Film Sliding on Ag(111)
The effects of a step defect and a random array of point defects (such as
vacancies or substitutional impurities) on the force of friction acting on a
xenon monolayer film as it slides on a silver (111) substrate are studied by
molecular dynamic simulations and compared with the results of lowest order
perturbation theory in the substrate corrugation potential. For the case of a
step, the magnitude and velocity dependence of the friction force are strongly
dependent on the direction of sliding respect to the step and the corrugation
strength. When the applied force F is perpendicular to the step, the film is
pinned forF less than a critical force Fc. Motion of the film along the step,
however, is not pinned. Fluctuations in the sliding velocity in time provide
evidence of both stick-slip motion and thermally activated creep. Simulations
done with a substrate containing a 5 percent concentration of random point
defects for various directions of the applied force show that the film is
pinned for the force below a critical value. The critical force, however, is
still much lower than the effective inertial force exerted on the film by the
oscillations of the substrate in experiments done with a quartz crystal
microbalance (QCM). Lowest order perturbation theory in the substrate potential
is shown to give results consistent with the simulations, and it is used to
give a physical picture of what could be expected for real surfaces which
contain many defects.Comment: 13 pages, 17 figures, latex plus postscript files for figure
PDS 144: the first confirmed Herbig Ae-Herbig Ae wide binary
PDS 144 is a pair of Herbig Ae stars that are separated by 5.'' 35 on the sky. It has previously been shown to have an A2Ve Herbig Ae star viewed at 83 degrees inclination as its northern member and an A5Ve Herbig Ae star as its southern member. Direct imagery revealed a disk occulting PDS 144 N-the first edge-on disk observed around a Herbig Ae star. The lack of an obvious disk in direct imagery suggested PDS 144 S might be viewed face-on or not physically associated with PDS 144 N. Multi-epoch Hubble Space Telescope imagery of PDS 144 with a 5 year baseline demonstrates PDS 144 N & S are comoving and have a common proper motion with TYC 6782-878-1. TYC 6782-878-1 has previously been identified as a member of Upper Sco sub-association A at d = 145 +/- 2 pc with an age of 5-10 Myr. Ground-based imagery reveals jets and a string of Herbig-Haro knots extending 13' (possibly further) which are aligned to within 7 degrees +/- 6 degrees on the sky. By combining proper motion data and the absence of a dark mid-plane with radial velocity data, we measure the inclination of PDS 144 S to be i = 73 degrees +/- 7 degrees. The radial velocity of the jets from PDS 144 N & S indicates they, and therefore their disks, are misaligned by 25 degrees +/- 9 degrees. This degree of misalignment is similar to that seen in T Tauri wide binaries.Peer reviewe
Primordial black hole constraints in cosmologies with early matter domination
Moduli fields, a natural prediction of any supergravity and
superstring-inspired supersymmetry theory, may lead to a prolonged period of
matter domination in the early Universe. This can be observationally viable
provided the moduli decay early enough to avoid harming nucleosynthesis. If
primordial black holes form, they would be expected to do so before or during
this matter dominated era. We examine the extent to which the standard
primordial black hole constraints are weakened in such a cosmology. Permitted
mass fractions of black holes at formation are of order , rather than
the usual or so. If the black holes form from density perturbations
with a power-law spectrum, its spectral index is limited to ,
rather than the obtained in the standard cosmology.Comment: 7 pages RevTeX file with four figures incorporated (uses RevTeX and
epsf). Also available by e-mailing ARL, or by WWW at
http://star-www.maps.susx.ac.uk/papers/infcos_papers.htm
Metal-Insulator oscillations in a Two-dimensional Electron-Hole system
The electrical transport properties of a bipolar InAs/GaSb system have been
studied in magnetic field. The resistivity oscillates between insulating and
metallic behaviour while the quantum Hall effect shows a digital character
oscillating from 0 to 1 conducatance quantum e^2/h. The insulating behaviour is
attributed to the formation of a total energy gap in the system. A novel looped
edge state picture is proposed associated with the appearance of a voltage
between Hall probes which is symmetric on magnetic field reversal.Comment: 4 pages, 5 Postscript figures: revised versio
Integronlike Structures in Campylobacter spp. of Human and Animal Origin
Resistance to antimicrobial agents used to treat severe Campylobacter spp. gastroenteritis is increasing worldwide. We assessed the antimicrobial resistance patterns of Campylobacter spp. isolates of human and animal origin. More than half (n = 32) were resistant to sulphonamide, a feature known to be associated with the presence of integrons. Analysis of these integrons will further our understanding of Campylobacter spp. epidemiology
High-spin states with seniority v=4,4,6 in 119-126Sn
The 119-126Sn nuclei have been produced as fission fragments in two reactions
induced by heavy ions: 12C+238U at 90 MeV bombarding energy, 18O+208Pb at 85
MeV. Their level schemes have been built from gamma rays detected using the
Euroball array. High-spin states located above the long-lived isomeric states
of the even- and odd-A 120-126Sn nuclei have been identified. Moreover isomeric
states lying around 4.5 MeV have been established in 120,122,124,126Sn from the
delayed coincidences between the fission fragment detector SAPhIR and the
Euroball array. The states located above 3-MeV excitation energy are ascribed
to several broken pairs of neutrons occupying the nu h11/2 orbit. The maximum
value of angular momentum available in such a high-j shell, i.e. for
mid-occupation and the breaking of the three neutron pairs, has been
identified. This process is observed for the first time in spherical nuclei.Comment: 20 pages, 22 figures, 12 tables, accepted for publication in Physical
Review
Imaging nanostructures with coherent phonon pulses
We demonstrate submicron resolution imaging using picosecond acoustic phonon pulses. High-frequency acoustic pulses are generated by impulsive thermoelastic excitation of a patterned 15-nm15-nm-thick metal film on a crystalline substrate using ultrafast optical pulses. The spatiotemporal diffracted acoustic strain field is measured on the opposite side of the substrate, and this field is used in a time-reversal algorithm to reconstruct the object. The image resolution is characterized using lithographically defined 1-micron1-micron-period Al structures on Si. Straightforward technical improvements should lead to resolution approaching 45 nm45nm, extending the resolution of acoustic microscopy into the nanoscale regime.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71146/2/APPLAB-84-25-5180-1.pd
Genetic algorithms and the analysis of SnIa data
The Genetic Algorithm is a heuristic that can be used to produce model
independent solutions to an optimization problem, thus making it ideal for use
in cosmology and more specifically in the analysis of type Ia supernovae data.
In this work we use the Genetic Algorithms (GA) in order to derive a null test
on the spatially flat cosmological constant model CDM. This is done in
two steps: first, we apply the GA to the Constitution SNIa data in order to
acquire a model independent reconstruction of the expansion history of the
Universe and second, we use the reconstructed in conjunction with
the Om statistic, which is constant only for the CDM model, to derive
our constraints. We find that while CDM is consistent with the data at
the level, some deviations from CDM model at low redshifts
can be accommodated.Comment: 11 pages, 7 figures, to be published in the proceedings of the 14th
Conference on Recent Developments in Gravity (NEB-14), Ioannina, Greece, 8-11
June 201
A common p73 polymorphism is associated with a reduced incidence of oesophageal carcinoma
The incidence of oesophageal adenocarcinoma is rising; to date, no susceptibility genes have been identified. p73, a novel p53 homologue, maps to chromosome 1p36, a region commonly deleted in oesophageal cancers. p73 shares some p53-like activity, but in addition, may also play a role in gastrointestinal epithelial inflammatory responses. A non-coding p73 polymorphism (denoted AT or GC) may be functionally significant. We investigated whether this polymorphism might play a role in the aetiopathogenesis of oesophageal cancer. This was a case–control, retrospective study. 84 cases of oesophageal cancer (25 squamous and 59 adenocarcinoma) and 152 normal population controls were genotyped for this polymorphism. Informative cases were examined for p73 LOH within the tumour. AT/AT homozygotes were significantly less prevalent in the oesophageal cancer population (1/84 = 1.2%) compared to controls (15/152 = 9.9%) (P < 0.02), corresponding to an odds ratio of 0.11 (95% C.I. 0.02–0.6, P < 0.02), or 9-fold reduced risk. Moreover, AT/AT homozygotes were significantly less frequent in the cancer population than would be expected under the Hardy–Weinberg hypothesis (P = 0.0099). LOH at the p73 locus was observed in 37.8% (14/37) of the AT/GC heterozygotes studied; in all cases there was loss of the AT allele. Our findings indicate that p73 AT/AT homozygotes appear to be protected against the development of oesophageal cancer. Clinically, this observation could have implications in aiding identification of high-risk Barrett's oesophagus patients.© 2001 Cancer Research Campaign http://www.bjcancer.co
Time-Resolved Studies of Stick-Slip Friction in Sheared Granular Layers
Sensitive and fast force measurements are performed on sheared granular
layers undergoing stick-slip motion, along with simultaneous imaging. A full
study has been done for spherical particles with a +-20% size distribution.
Stick-slip motion due to repetitive fluidization of the layer occurs for low
driving velocities. Between major slip events, slight creep occurs that is
variable from one event to the next. The effects of changing the stiffness k
and velocity V of the driving system are studied in detail. The stick-slip
motion is almost periodic for spherical particles over a wide range of
parameters, but becomes irregular when k is large and V is relatively small. At
larger V, the motion becomes smoother and is affected by the inertia of the
upper plate bounding the layer. Measurements of the period T and amplitude A of
the relative motion are presented as a function of V. At a critical value Vc, a
transition to continuous sliding motion occurs that is discontinuous for k not
too large. The time dependence of the instantaneous velocity of the upper plate
and the frictional force produced by the granular layer are determined within
individual slipping events. The force is a multi-valued function of the
instantaneous velocity, with pronounced hysteresis and a sudden drop prior to
resticking. Measurements of vertical displacement reveal a small dilation of
the material (about one tenth of the mean particle size in a layer 20 particles
deep) associated with each slip event. Finally, optical imaging reveals that
localized microscopic rearrangements precede (and follow) each slip event. The
behavior of smooth particles is contrasted with that of rough particles.Comment: 20, pages, 17 figures, to appear in Phys. Rev.
- …