683 research outputs found

    On the importance of paleoclimate modelling for improving predictions of future climate change

    Get PDF
    We use an ensemble of runs from the MIROC3.2 AGCM with slab-ocean to explore the extent to which mid-Holocene simulations are relevant to predictions of future climate change. The results are compared with similar analyses for the Last Glacial Maximum (LGM) and pre-industrial control climate. We suggest that the paleoclimate epochs can provide some independent validation of the models that is also relevant for future predictions. Considering the paleoclimate epochs, we find that the stronger global forcing and hence larger climate change at the LGM makes this likely to be the more powerful one for estimating the large-scale changes that are anticipated due to anthropogenic forcing. The phenomena in the mid-Holocene simulations which are most strongly correlated with future changes (i.e., the mid to high northern latitude land temperature and monsoon precipitation) do, however, coincide with areas where the LGM results are not correlated with future changes, and these are also areas where the paleodata indicate significant climate changes have occurred. Thus, these regions and phenomena for the mid-Holocene may be useful for model improvement and validation

    Surface electrical properties experiment, part 1

    Get PDF
    The work is reported which was performed on the Surface Electrical Properties Experiment Data Acquisition System. Areas discussed include: data handling and processing, installation and external signal application, operation of the equipment, and digital output. Detailed circuit descriptions are included

    The Influence of Binary Stars on Dwarf Spheroidal Galaxy Kinematics

    Get PDF
    We have completed a Monte-Carlo simulation to estimate the effect of binary star orbits on the measured velocity dispersion in dwarf spheroidal galaxies. This paper analyses previous attempts at this calculation, and explains the simulations which were performed with mass, period and ellipticity distributions similar to that measured for the solar neighbourhood. The conclusion is that with functions such as these, the contribution of binary stars to the velocity dispersion is small. The distributions are consistent with the percentage of binaries detected by observations, although this is quite dependent on the measuring errors and on the number of years over which measurements have been taken. For binaries to be making a significant contribution to the dispersion measured in dSph galaxies, the distributions of the orbital parameters would need to be very different from those of stars in the solar neighbourhood. In particular more smaller period orbits with higher mass secondaries would be required. The shape of the velocity distribution may help to resolve this issue when more data becomes available. In general, the scenarios producing a larger apparent dispersion have a velocity distribution which deviates more clearly from Gaussian.Comment: MNRAS in press, uuencoded ps fil

    Quantification of the Greenland ice sheet contribution to Last Interglacial sea level rise

    Get PDF
    During the Last Interglacial period (~ 130–115 thousand years ago) the Arctic climate was warmer than today, and global mean sea level was probably more than 6.6 m higher. However, there are large discrepancies in the estimated contributions to this sea level change from various sources (the Greenland and Antarctic ice sheets and smaller ice caps). Here, we determine probabilistically the likely contribution of Greenland ice sheet melt to Last Interglacial sea level rise, taking into account ice sheet model parametric uncertainty. We perform an ensemble of 500 Glimmer ice sheet model simulations forced with climatologies from the climate model HadCM3, and constrain the results with palaeodata from Greenland ice cores. Our results suggest a 90% probability that Greenland ice melt contributed at least 0.6 m, but less than 10% probability that it exceeded 3.5 m, a value which is lower than several recent estimates. Many of these previous estimates, however, did not include a full general circulation climate model that can capture atmospheric circulation and precipitation changes in response to changes in insolation forcing and orographic height. Our combined modelling and palaeodata approach suggests that the Greenland ice sheet is less sensitive to orbital forcing than previously thought, and it implicates Antarctic melt as providing a substantial contribution to Last Interglacial sea level rise. Future work should assess additional uncertainty due to inclusion of basal sliding and the direct effect of insolation on surface melt. In addition, the effect of uncertainty arising from climate model structural design should be taken into account by performing a multi-climate-model comparison

    Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter

    Get PDF
    International audienceWe demonstrate the application of an efficient multivariate probabilistic parameter estimation method to a spectral primitive equation atmospheric GCM. The method, which is based on the Ensemble Kalman Filter, is effective at tuning the surface air temperature climatology of the model to both identical twin data and reanalysis data. When 5 parameters were simultaneously tuned to fit the model to reanalysis data, the model errors were reduced by around 35% compared to those given by the default parameter values. However, the precipitation field proved to be insensitive to these parameters and remains rather poor. The model is computationally cheap but chaotic and otherwise realistic, and the success of these experiments suggests that this method should be capable of tuning more sophisticated models, in particular for the purposes of climate hindcasting and prediction. Furthermore, the method is shown to be useful in determining structural deficiencies in the model which can not be improved by tuning, and so can be a useful tool to guide model development. The work presented here is for a limited set of parameters and data, but the scalability of the method is such that it could easily be extended to a more comprehensive parameter set given sufficient observational data to constrain them

    Linking glacial and future climates through an ensemble of GCM simulations

    No full text
    International audienceIn this paper we explore the relationships between the modelled climate of the Last Glacial Maximum (LGM) and that for doubled atmospheric carbon dioxide compared to the pre-industrial climate by analysing the output from an ensemble of runs from the MIROC3.2 GCM. Our results lend support to the idea in other recent work that the Antarctic is a useful place to look for historical data which can be used to validate models used for climate forecasting of future greenhouse gas induced climate changes, at local, regional and global scales. Good results may also be obtainable using tropical temperatures, particularly those over the ocean. While the greater area in the tropics makes them an attractive area for seeking data, polar amplification of temperature changes may mean that the Anatarctic provides a clearer signal relative to the uncertainties in data and model results. Our result for Greenland is not so strong, possibly due to difficulties in accurately modelling the sea ice extent. The MIROC3.2 model shows an asymmetry in climate sensitivity calculated by decreasing rather than increasing the greenhouse gases, with 80% of the ensemble having a weaker cooling than warming. This asymmetry, if confirmed by other studies would mean that direct estimates of climate sensitivity from the LGM are likely to be underestimated by the order of half a degree. Our suspicion is, however, that this result may be highly model dependent. Analysis of the parameters varied in the model suggest the asymmetrical response may be linked to the ice in the clouds, which is therefore indicated as an important area for future research

    Extent of partial ice cover due to carbon cycle feedback in a zonal energy balance model

    No full text
    International audienceA global carbon cycle is introduced into a zonally averaged energy balance climate model. The physical model components are similar to those of Budyko (1969) and Sellers (1969). The new carbon components account for atmospheric carbon dioxide concentrations and the terrestrial and oceanic storage of carbon. Prescribing values for the sum of these carbon components, it is found that inclusion of a closed carbon cycle reduces the range of insolation over which stable partial ice cover solutions may occur. This highly simplified climate model also predicts that the estimated release of carbon from fossil fuel burning over the next hundred years could result in the eventual melting of the ice sheets. Keywords: climate, carbon cycle,zonal model, earth system modellin

    Linking glacial and future climates through an ensemble of GCM simulations

    Get PDF
    In this paper we explore the relationships between the modelled climate of the Last Glacial Maximum (LGM) and that for doubled atmospheric carbon dioxide compared to the pre-industrial climate by analysing the output from an ensemble of runs from the MIROC3.2 GCM. <br><br> Our results lend support to the idea in other recent work that the Antarctic is a useful place to look for historical data which can be used to validate models used for climate forecasting of future greenhouse gas induced climate changes, at local, regional and global scales. Good results may also be obtainable using tropical temperatures, particularly those over the ocean. While the greater area in the tropics makes them an attractive area for seeking data, polar amplification of temperature changes may mean that the Antarctic provides a clearer signal relative to the uncertainties in data and model results. Our result for Greenland is not so strong, possibly due to difficulties in accurately modelling the sea ice extent. <br><br> The MIROC3.2 model shows an asymmetry in climate sensitivity calculated by decreasing rather than increasing the greenhouse gases, with 80% of the ensemble having a weaker cooling than warming. This asymmetry, if confirmed by other studies would mean that direct estimates of climate sensitivity from the LGM are likely to be underestimated by the order of half a degree. Our suspicion is, however, that this result may be highly model dependent. Analysis of the parameters varied in the model suggest the asymmetrical response may be linked to the ice in the clouds, which is therefore indicated as an important area for future research

    Reducing PTSD symptoms through a gender norms and economic empowerment intervention to reduce intimate partner violence: a randomized controlled pilot study in Côte D'Ivoire

    Get PDF
    Background. Women living in war-affected contexts face high levels of gender-based violence, including intimate partner violence (Stark & Ager, 2011). Despite well-documented negative consequences, including posttraumatic stress disorder (PTSD) (Garcia-Moreno et al. 2006; Steel et al. 2009), evidence remains thin regarding intervention effectiveness to mitigate consequences in these settings. Methods. This study used a two-armed parallel pilot randomized controlled trial to compare the impact of a group savings only (control) to gender dialogue groups added to group savings (treatment) on women's symptoms of PTSD in northwestern Côte d'Ivoire. Eligible Ivorian women (18+ years, no prior experience with group savings) were invited to participate and 1198 were randomized into treatment groups. Results. In the ITT analyses, women in the treatment arm had significantly fewer PTSD symptoms relative to the control arm (β: −0.12; 95% CI: −0.20 to −0.03; p = 0.005). Partnered women in the treatment arm who had not experienced intimate partner violence (IPV) at baseline had significantly fewer PTSD symptoms than the control arm (β = −0.12; 95% CI: −0.21 to −0.03; p = 0.008), while those who had experienced IPV did not show significant differences between treatment and control arms (β = −0.09; 95% CI: −0.29 to 0.11; p = 0.40). Conclusions. Adding a couples gender discussion group to a women's savings group significantly reduced women's PTSD symptoms overall. Different patterns emerge for women who experienced IPV at baseline v. those who did not. More research is needed on interventions to improve mental health symptoms for women with and without IPV experiences in settings affected by conflict
    • …
    corecore