926 research outputs found

    Magnetic incommensurability in pp-type cuprate perovskites

    Full text link
    For the superconducting phase with a d-wave order parameter and zero temperature the magnetic susceptibility of the t-J model is calculated using the Mori projection operator technique. Conditions for the appearance of an incommensurate magnetic response below the resonance frequency are identified. A fast decay of the tails of the hole coherent peaks and a weak intensity of the hole incoherent continuum near the Fermi level are enough to produce an incommensurate response using different hole dispersions established for pp-type cuprates, in which such response was observed. In this case, the nesting of the itinerant-electron theory or the charge modulation of the stripe theory is unnecessary for the incommensurability. The theory reproduces the hourglass dispersion of the susceptibility maxima with their location in the momentum space similar to that observed experimentally. The upper branch of the dispersion stems from the excitations of localized spins, while the lower one is due to the incommensurate maxima of their damping. The narrow and intensive resonance peak arises if the frequency of these excitations at the antiferromagnetic momentum lies below the edge of the two-fermion continuum; otherwise the maximum is broad and less intensive.Comment: 22 pages, 7 figure

    Linear scaling calculation of band edge states and doped semiconductors

    Full text link
    Linear scaling methods provide total energy, but no energy levels and canonical wavefuctions. From the density matrix computed through the density matrix purification methods, we propose an order-N (O(N)) method for calculating both the energies and wavefuctions of band edge states, which are important for optical properties and chemical reactions. In addition, we also develop an O(N) algorithm to deal with doped semiconductors based on the O(N) method for band edge states calculation. We illustrate the O(N) behavior of the new method by applying it to boron nitride (BN) nanotubes and BN nanotubes with an adsorbed hydrogen atom. The band gap of various BN nanotubes are investigated systematicly and the acceptor levels of BN nanotubes with an isolated adsorbed H atom are computed. Our methods are simple, robust, and especially suited for the application in self-consistent field electronic structure theory

    Imaging and manipulating electrons in a 1D quantum dot with Coulomb blockade microscopy

    Get PDF
    Motivated by the recent experiments by the Westervelt group using a mobile tip to probe the electronic state of quantum dots formed on a segmented nanowire, we study the shifts in Coulomb blockade peak positions as a function of the spatial variation of the tip potential, which can be termed "Coulomb blockade microscopy". We show that if the tip can be brought sufficiently close to the nanowire, one can distinguish a high density electronic liquid state from a Wigner crystal state by microscopy with a weak tip potential. In the opposite limit of a strongly negative tip potential, the potential depletes the electronic density under it and divides the quantum wire into two partitions. There the tip can push individual electrons from one partition to the other, and the Coulomb blockade micrograph can clearly track such transitions. We show that this phenomenon can be used to qualitatively estimate the relative importance of the electron interaction compared to one particle potential and kinetic energies. Finally, we propose that a weak tip Coulomb blockade micrograph focusing on the transition between electron number N=0 and N=1 states may be used to experimentally map the one-particle potential landscape produced by impurities and inhomogeneities.Comment: 4 pages 7 figure

    The importance of planetary rotation period for ocean heat transport

    Get PDF
    The climate, and hence potential habitability, of a planet crucially depends on how its atmospheric and oceanic circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modelling the dynamics of their atmospheres whilst dramatically simplifying the treatment of the oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet having no continental barriers, which is a configuration which dramatically changes the oceanic dynamics. Here the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier – the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability

    Ordered and periodic chaos of the bounded one dimensinal multibarrier potential

    Full text link
    Numerical analysis indicates that there exists an unexpected new ordered chaos for the bounded one-dimensional multibarrier potential. For certain values of the number of barriers, repeated identical forms (periods) of the wavepackets result upon passing through the multibarrier potential.Comment: 16 pages, 9 figures, 1 Table. Some former text removed and other introduce

    Four layer bandage compared with short stretch bandage for venous leg ulcers: systematic review and meta-analysis of randomised controlled trials with data from individual patients

    Get PDF
    <p><b>Objective:</b> To compare the effectiveness of two types of compression treatment (four layer bandage and short stretch bandage) in people with venous leg ulceration.</p> <p><b>Design:</b> Systematic review and meta-analysis of patient level data.</p> <p><b>Data:</b> sources Electronic databases (the Cochrane Central Register of Controlled Trials, the Cochrane Wounds Group Specialised Register, Medline, Embase, CINAHL, and National Research Register) and reference lists of retrieved articles searched to identify relevant trials and primary investigators. Primary investigators of eligible trials were invited to contribute raw data for re-analysis.</p> <p><b>Review:</b> methods Randomised controlled trials of four layer bandage compared with short stretch bandage in people with venous leg ulceration were eligible for inclusion. The primary outcome for the meta-analysis was time to healing. Cox proportional hazards models were run to compare the methods in terms of time to healing with adjustment for independent predictors of healing. Secondary outcomes included incidence and number of adverse events per patient.</p> <p><b>Results:</b> Seven eligible trials were identified (887 patients), and patient level data were retrieved for five (797 patients, 90% of known randomised patients). The four layer bandage was associated with significantly shorter time to healing: hazard ratio (95% confidence interval) from multifactorial model based on five trials was 1.31 (1.09 to 1.58), P=0.005. Larger ulcer area at baseline, more chronic ulceration, and previous ulceration were all independent predictors of delayed healing. Data from two trials showed no evidence of a difference in adverse event profiles between the two bandage types.</p> <p><b>Conclusions:</b> Venous leg ulcers in patients treated with four layer bandages heal faster, on average, than those of people treated with the short stretch bandage. Benefits were consistent across patients with differing prognostic profiles.</p&gt

    The Optimal Inhomogeneity for Superconductivity: Finite Size Studies

    Full text link
    We report the results of exact diagonalization studies of Hubbard models on a 4×44\times 4 square lattice with periodic boundary conditions and various degrees and patterns of inhomogeneity, which are represented by inequivalent hopping integrals tt and t′t^{\prime}. We focus primarily on two patterns, the checkerboard and the striped cases, for a large range of values of the on-site repulsion UU and doped hole concentration, xx. We present evidence that superconductivity is strongest for UU of order the bandwidth, and intermediate inhomogeneity, 0<t′<t0 <t^\prime< t. The maximum value of the ``pair-binding energy'' we have found with purely repulsive interactions is Δpb=0.32t\Delta_{pb} = 0.32t for the checkerboard Hubbard model with U=8tU=8t and t′=0.5tt^\prime = 0.5t. Moreover, for near optimal values, our results are insensitive to changes in boundary conditions, suggesting that the correlation length is sufficiently short that finite size effects are already unimportant.Comment: 8 pages, 9 figures; minor revisions; more references adde

    Local electronic nematicity in the one-band Hubbard model

    Full text link
    Nematicity is a well known property of liquid crystals and has been recently discussed in the context of strongly interacting electrons. An electronic nematic phase has been seen by many experiments in certain strongly correlated materials, in particular, in the pseudogap phase generic to many hole-doped cuprate superconductors. Recent measurements in high TcT_c superconductors has shown even if the lattice is perfectly rotationally symmetric, the ground state can still have strongly nematic local properties. Our study of the two-dimensional Hubbard model provides strong support of the recent experimental results on local rotational C4C_4 symmetry breaking. The variational cluster approach is used here to show the possibility of an electronic nematic state and the proximity of the underlying symmetry-breaking ground state within the Hubbard model. We identify this nematic phase in the overdoped region and show that the local nematicity decreases with increasing electron filling. Our results also indicate that strong Coulomb interaction may drive the nematic phase into a phase similar to the stripe structure. The calculated spin (magnetic) correlation function in momentum space shows the effects resulting from real-space nematicity

    Theory of momentum resolved tunneling into a short quantum wire

    Full text link
    Motivated by recent tunneling experiments in the parallel wire geometry, we calculate results for momentum resolved tunneling into a short one-dimensional wire, containing a small number of electrons. We derive some general theorems about the momentum dependence, and we carry out exact calculations for up to N=4 electrons in the final state, for a system with screened Coulomb interactions that models the situation of the experiments. We also investigate the limit of large NN using a Luttinger-liquid type analysis. We consider the low-density regime, where the system is close to the Wigner crystal limit, and where the energy scale for spin excitations can be much lower than for charge excitations, and we consider temperatures intermediate between the relevant spin energies and charge excitations, as well as temperatures below both energy scales.Comment: 19 pages, 13 figures, clarified text in a few points, added 1 figure, updated reference

    What's the evidence that NICE guidance has been implemented? Results from a national evaluation using time series analysis, audit of patients' notes, and interviews

    Get PDF
    OBJECTIVES: To assess the extent and pattern of implementation of guidance issued by the National Institute for Clinical Excellence (NICE). DESIGN: Interrupted time series analysis, review of case notes, survey, and interviews. SETTING: Acute and primary care trusts in England and Wales. PARTICIPANTS: All primary care prescribing, hospital pharmacies; a random sample of 20 acute trusts, 17 mental health trusts, and 21 primary care trusts; and senior clinicians and managers from five acute trusts. MAIN OUTCOME MEASURES: Rates of prescribing and use of procedures and medical devices relative to evidence based guidance. RESULTS: 6308 usable patient audit forms were returned. Implementation of NICE guidance varied by trust and by topic. Prescribing of some taxanes for cancer (P <0.002) and orlistat for obesity (P <0.001) significantly increased in line with guidance. Prescribing of drugs for Alzheimer’s disease and prophylactic extraction of wisdom teeth showed trends consistent with, but not obviously a consequence of, the guidance. Prescribing practice often did not accord with the details of the guidance. No change was apparent in the use of hearing aids, hip prostheses, implantable cardioverter defibrillators, laparoscopic hernia repair, and laparoscopic colorectal cancer surgery after NICE guidance had been issued. CONCLUSIONS: Implementation of NICE guidance has been variable. Guidance seems more likely to be adopted when there is strong professional support, a stable and convincing evidence base, and no increased or unfunded costs, in organisations that have established good systems for tracking guidance implementation and where the professionals involved are not isolated. Guidance needs to be clear and reflect the clinical context
    • …
    corecore