781 research outputs found
Strong Correlations in Actinide Redox Reactions
Reduction-oxidation (redox) reactions of the redox couples An(VI)/An(V),
An(V)/An(IV), and An(IV)/An(III), where An is an element in the family of early
actinides (U, Np, and Pu), as well as Am(VI)/Am(V) and Am(V)/Am(III), are
modeled by combining density functional theory with a generalized Anderson
impurity model that accounts for the strong correlations between the 5f
electrons. Diagonalization of the Anderson impurity model yields improved
estimates for the redox potentials and the propensity of the actinide complexes
to disproportionate.Comment: 17 pages, 10 figure, 3 tables. Corrections and clarifications; this
version has been accepted for publication in The Journal of Chemical Physic
Digital curriculum resources in mathematics education: foundations for change
In this conceptual review paper we draw on recent literature with respect to digital curriculum resources (DCR); we briefly outline and explain selected theoretical frames; and we discuss issues related to the design, and the use (by teachers and students) of digital curricula and e-textbooks in mathematics education. The results of our review show the following. Firstly, whilst there are some contrasting tendencies between research on instructional technology and research on DCR, these studies are at the same time predominantly framed by socio-cultural theories. Secondly, whilst there seems to be a continuing demarcation between the design(er) and the use(r), there is at the same time an emerging/increasing understanding that design continues in use, due to the different nature and affordances of DCR (as compared to traditional text curriculum resources). Thirdly, there is an apparent weakening of traditional demarcations between pedagogy and assessment, and between summative and formative assessment techniques, due to the nature and design of the automated learning systems. Fourthly, there is an increasing need for understanding the expanded space of interaction associated with the shift from static print to dynamic/interactive DCR, a shift that has the potential to support different forms of personalised learning and interaction with resources. Hence, we claim that DCR offer opportunities for change: of understandings concerning the design and use of DCR; of their quality; and of the processes related to teacher/student interactions with DCR—they provide indeed the foundations for change
Digital curriculum resources in mathematics education: foundations for change
In this conceptual review paper we draw on recent literature with respect to digital curriculum resources (DCR); we briefly outline and explain selected theoretical frames; and we discuss issues related to the design, and the use (by teachers and students) of digital curricula and e-textbooks in mathematics education. The results of our review show the following. Firstly, whilst there are some contrasting tendencies between research on instructional technology and research on DCR, these studies are at the same time predominantly framed by socio-cultural theories. Secondly, whilst there seems to be a continuing demarcation between the design(er) and the use(r), there is at the same time an emerging/increasing understanding that design continues in use, due to the different nature and affordances of DCR (as compared to traditional text curriculum resources). Thirdly, there is an apparent weakening of traditional demarcations between pedagogy and assessment, and between summative and formative assessment techniques, due to the nature and design of the automated learning systems. Fourthly, there is an increasing need for understanding the expanded space of interaction associated with the shift from static print to dynamic/interactive DCR, a shift that has the potential to support different forms of personalised learning and interaction with resources. Hence, we claim that DCR offer opportunities for change: of understandings concerning the design and use of DCR; of their quality; and of the processes related to teacher/student interactions with DCR—they provide indeed the foundations for change
A depth camera-based system for estimating cyclist-bike projected frontal area
A major component of total resistive force in cycling is aerodynamic drag. For speeds greater than ~14 m/s aerodynamic drag accounts for approximately 90% of total resistive force (Debraux et al., 2009: International Journal of Sports Medicine, 30, 266-272). Together with the air density, the coefficient of drag and the velocity of the cyclist-bike, an important determinant of aerodynamic drag is projected frontal area. Several techniques have been used to estimate the projected frontal area of a cyclist-bike, including the weighing of photographs and image digitising (Debraux et al., 2009). These techniques are similar as they involve extracting the cyclist-bike from a two-dimensional (2D) image and using scaling information from a plane of known dimensions. With the weighing photographs method this is done physically using sensitive weighing scales whereas image processing software is used for the image digitising technique. Both techniques require the collection of a calibration plane, involve considerable post-processing and cannot be performed in real time. We have developed a depth camera-based system for estimating cyclist-bike projected frontal area which addresses these issues. The depth camera algorithm works by creating a metrically scaled, three-dimensional point cloud of the cyclist-bike. The point cloud is projected on to a 2D representation of the scene and the area of the point cloud is calculated using a technique similar to ‘voxelization’; points in the cloud occupy spaces in a fine grid – the sum of the occupied grid spaces gives total area. The aim of this study was to investigate the agreement between our new method and the image digitising technique.After institutional ethics approval, eight regular cyclists volunteered to participate and provided written informed consent. Participants wore their normal cycling clothing and their bicycle was mounted on a stationary indoor trainer. The bicycle was positioned against a white background to help with the image digitising method. Participants placed their feet on the pedals and held the cranks parallel to the floor. A digital camera (Canon EOS 400D, 10.1 megapixel) and Kinect depth camera (Microsoft, Redmond, WA, USA) were mounted on tripods at a height of 1.1 m and positioned 5 m and 2.2 m in front of the participant, respectively. Similar to Debraux et al. (2009), participants adopted two positions on the bike: 1. Upright – upright torso with hands close to the stem and 2. Drops Position – hands on the drops. Three repeat captures were performed in each position, with the participant relaxing between each capture. The digitising method was performed as described by Debraux et al. (2009). Agreement between methods was assessed using limits of agreement (LOA - Bland and Altman, 1986: Lancet, 1, 307-310). A two-way repeated measures analysis of variance (method by position) was used to assess the effect of cyclist position on the systematic difference between measurement methods.There was no interaction between cyclist position and measurement method (p = 0.201) indicating that the same effect of cyclist position was observed using both measurement techniques. A significant main effect for cyclist position (p = 0.017) indicated that projected frontal area was smaller with hands on the drops (upright: 0.485 m2, drops: 0.434 m2). There was also a significant main effect for measurement method (p < 0.001) indicating a significantly smaller estimation of projected frontal area using the Kinect (Kinect: 0.416 m2, Image: 0.503 m2). A predominantly systematic difference between methods was also suggested by the LOA analysis (upright: 0.086 ± 0.029 m2, drops: 0.090 ± 0.033 m2).The aim of this study was to assess the agreement between a common method of estimating cyclist-bike frontal area and a new depth camera-based technique. The new technique estimated systematically smaller projected frontal area than the image digitisation method but there was relatively little random variation and the same effect of cyclist position was observed with both techniques. Which technique gives the most accurate estimate of projected frontal area is not clear as the image digitisation technique - to which the new technique was compared - has associated errors e.g. identification of the cyclist-bike outline and out-of-plane errors. However, it was apparent during testing that the depth camera-based system often failed to identify parts of the bike and this is most likely the cause of the difference between techniques. Regardless, the results of this study suggest that the new technique can be used to assess changes in projected frontal area – as the cyclist changes position, for example. Further, the new technique offers the possibility of analysing changes in projected frontal area in real time – there is no requirement for calibration or post-processing
Effects of moment of inertia on restricted motion swing speed
In many sports, the maximum swing speed of a racket, club, or bat is a key performance parameter. Previous research in multiple sports supports the hypothesis of an inverse association between the swing speed and moment of inertia of an implement. The aim of this study was to rigorously test and quantify this relationship using a restricted swinging motion. Eight visually identical rods with a common mass but variable moment of inertia were manufactured. Motion capture technology was used to record eight participants' maximal effort swings with the rods. Strict exclusion criteria were applied to data that did not adhere to the prescribed movement pattern. The study found that for all participants, swing speed decreased with respect to moment of inertia according to a power relationship. However, in contrast to previous studies, the rate of decrease varied from participant to participant. With further analysis it was found that participants performed more consistently at the higher end of the moment of inertia range tested. The results support the inverse association between swing speed and moment of inertia but only for higher moment of inertia implements
Materials have driven the historical development of the Tennis Racket
© 2019 by the authors. The tennis racket has developed since the origins of Lawn Tennis in the 1870s. This study investigated how the tennis racket developed from 1874 to 2017, using measurements and material classifications for 525 samples. Racket measurements covered geometric, inertial and dynamic properties, and the number of strings. Rackets predating 1970 were mainly wooden, and typically characterised by head areas below 0.05 m2, masses over 350 g and natural frequencies below 120 Hz. Rackets from the 1970s were made from wood, metal and fibre-polymer composites, with most postdating 1980 made from fibre-polymer composites with a larger head, lower mass and higher natural frequency than their predecessors. Principal component analysis was used to reduce the dimensionality of the number of variables. Principal component one (PCA1) accounted for 35% of the variance in the measured racket properties, and was found to be significantly affected by material. Head width was best correlated with principal component one (r = 0.897, p < 0.001), followed by head length (r = 0.841, p < 0.001) and natural frequency (r = 0.813, p < 0.001). Early rackets were constrained by the limitations of wood, and the move to composites, which began in the 1970s, allowed this observed increase in head size and natural frequency. As material development has been a major driver of racket design in the past, we propose that new materials and manufacturing techniques, like additively manufactured composites, could further improve the tennis racket. The measurement techniques described here can be used to monitor developments in racket design
Upstaging nodal status in colorectal cancer using ex vivo fluorescence sentinel lymph node mapping: preliminary results
Background: Sentinel lymph node (SLN) mapping using near-infrared fluorescence (NIRF) imaging is a recent technique to improve nodal staging in several tumors. The presence of colorectal cancer (CRC) micro-metastases has recently been defined as N1 disease and no longer as N1mi, determining the need for adjuvant chemotherapy. In CRC, the reported rate of SLN micro-metastases detected by ultrastaging techniques is as high as 30%. The aim of this prospective study is to report the preliminary results of the sensitivity analysis of NIRF imaging for ex vivo SLN mapping and the research of micro-metastases in CRC, in patients with node-negative disease (NND). Material and methods: On the specimen of 22 CRC patients, 1 mL of ICG (5 mg/mL) was injected submucosally around the tumor to identify SLNs. NND SLNs were further investigated with ultrastaging techniques. Results: Three-hundred and sixty-three lymph nodes were retrieved (59 SLNs; mean per case: 2.7). The detection, sensitivity and false-negative rate were 100%, 100% and 0% respectively. Ultrastaging investigations showed no micro-metastases in the NND SLNs. Conclusions: The ex vivo SLN fluorescence-based detection in CRC was confirmed to be easy to perform and reliable. In this preliminary results report of an ongoing study, the SLN assay was congruent with the nodal status, as confirmed by histological investigations
Tumor-associated antigen human chorionic gonadotropin beta contains numerous antigenic determinants recognized by in vitro-induced CD8+ and CD4+ T lymphocytes.
The beta subunit of human chorionic gonadotropin (hCG beta) is markedly overexpressed by neoplastic cells of differing histological origin including those present in colon, breast, prostate and bladder tumors. We have previously shown that some patients with hCG beta-producing urothelial tumors have circulating T cells that proliferate in response to hCG beta. To make a comprehensive study of hCG beta as a potential target for cancer immunotherapy, we investigated whether hCG beta peptides could induce CD4+ or CD8+ T-cell responses in vitro. By stimulating peripheral blood mononuclear cells (PBMCs) from three donors with mixtures of overlapping 16-mer synthetic peptides analogous to portions of either the hCG beta 20-71 or the hCG beta 102-129 region, we established six CD4+ T-cell lines that proliferated specifically in response to five distinct determinants located within these two hCG beta regions. Three antigenic determinants (hCG beta 52-67, 106-121 and 114-125) were presented by HLA-DR molecules, while the two other antigenic determinants (hCG beta 48-63 and 56-67) were presented by HLA-DQ molecules. Interestingly, one T-cell line specific for peptide hCG beta 106-121 recognized hCG beta peptides comprising, at position 117, either an alanine or an aspartic acid residue, with the latter residue being present within the protein expressed by some tumor cells. In addition, three other hCG beta-derived peptides that exhibited HLA-A*0201 binding ability were able to stimulate CD8+ cytotoxic T cells from two HLA-A*0201 donors. These three immunogenic peptides corresponded to regions hCG beta 40-48, hCG beta 44-52 and hCG beta 75-84. Our results indicate that the tumor-associated antigen hCG beta possesses numerous antigenic determinants liable to stimulate CD4+ and CD8+ T lymphocytes, and might thus be an effective target antigen for the immunotherapy of hCG beta-producing tumors
Recommended from our members
Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand
The synthesis, lanthanide complexation, and solvent ex- traction of actinide(III) and lanthanide(III) radiotracers from nitric acid solutions by a phenanthroline-derived quadridentate bis-triazine ligand are described. The ligand separates Am(III) and Cm(III) from the lanthanides with remarkably high efficiency, high selectivity, and fast extraction kinetics compared to its 2,2'-bipyridine counterpart. Structures of the 1:2 bis-complexes of the ligand with Eu(III) and Yb(III) were elucidated by X-ray crystallography and force field calculations, respec-tively. The Eu(III) bis-complex is the first 1:2 bis-complex of a quadridentate bis-triazine ligand to be characterized by crystallography. The faster rates of extraction were verified by kinetics measurements using the rotating membrane cell technique in several diluents. The improved kinetics of metal ion extraction are related to the higher surface activity of the ligand at the phase interface. The improvement in the ligand's properties on replacing the bipyridine unit with a phenanthroline unit far exceeds what was anticipated based on ligand design alone
- …