1,036 research outputs found
Central Charge and the Andrews-Bailey Construction
From the equivalence of the bosonic and fermionic representations of
finitized characters in conformal field theory, one can extract mathematical
objects known as Bailey pairs. Recently Berkovich, McCoy and Schilling have
constructed a `generalized' character formula depending on two parameters \ra
and , using the Bailey pairs of the unitary model . By taking
appropriate limits of these parameters, they were able to obtain the characters
of model , model , and the unitary model with
central charge . In this letter we computed the effective
central charge associated with this `generalized' character formula using a
saddle point method. The result is a simple expression in dilogarithms which
interpolates between the central charges of these unitary models.Comment: Latex2e, requires cite.sty package, 13 pages. Additional footnote,
citation and reference
A study on the compressive strength of thick carbon fibre-epoxy laminates
This paper describes an experimental study that examines the effect of specimen size on the axial compressive strength of IM7/8552 carbon fibre/epoxy unidirectional laminates (UD). Laminate gauge length, width and thickness were increased by a scaling factor of 2 and 4 from the baseline specimen size of 10 mm x 10 mm x 2 mm. In all cases, strength decreased as specimen size increased, with a maximum reduction of 45%; no significant changes were observed for the axial modulus. Optical micrographs show that the failure mechanism is fibre microbuckling accompanied by matrix cracking and splitting. The location of failure in most specimens, especially the thicker ones, is where the tabs terminate and the gauge section begins
suggesting that the high local stresses developed due to geometric discontinuity contribute to premature failure and hence reduced compressive strength. Two generic quasi-isotropic multi-directional (MD) lay-ups were also tested in compression, one with blocked plies [45n/90n/-45n/0n]s and the other with distributed plies [45/90/-45/0]ns with n=2, 4 and 8. The material used and test fixture was identical to that of the unidirectional specimens with three different gauge sections (30 mm x 30 mm, 60 mm x 60 mm and 120 mm x 120 mm) to establish any size effects. Strength results showed no evidence of a size effect when the specimens are scaled up using distributed plies and compared to the 2 mm thick specimens. All blocked specimens had similar compressive strengths to the sub-laminate ones apart of the 8 mm specimens that showed a 30% reduction due to extensive matrix cracking introduced during the specimen's cutting process. The calculated unidirectional failure stress (of the 0° ply within the multidirectional laminate) of about 1710 MPa is slightly higher than the average measured value of 1570 MPa of the 2 mm thick baseline unidirectional specimen, suggesting that the reduced unidirectional strength observed for the thicker specimens is a testing artefact. It appears that the unidirectional compressive strength in thicker specimens (>2 mm) is found to be limited by the stress concentration developed at the end tabs and manufacturing
induced defects
PRGA: Privary-preserving Recording & Gateway-Assisted Authentication of Power Usage Information for Smart Grid
published_or_final_versio
Polarized cell motility induces hydrogen peroxide to inhibit cofilin via cysteine oxidation
Mesenchymal cell motility is driven by polarized actin polymerization [1]. Signals at the leading edge recruit actin polymerization machinery to promote membrane protrusion, while matrix adhesion generates tractive force to propel forward movement. To work effectively, cell motility is regulated by a complex network of signaling events that affect protein activity and localization. H2O2 has an important role as a diffusible second messenger [2], and mediates its effects through oxidation of cysteine thiols. One cell activity influenced by H2O2 is motility [3]. However, a lack of sensitive and H2O2-specific probes for measurements in live cells has not allowed for direct observation of H2O2 accumulation in migrating cells or protrusions. In addition, the identities of proteins oxidized by H2O2 that contribute to actin dynamics and cell motility have not been characterized. We now show, as determined by fluorescence lifetime imaging microscopy, that motile cells generate H2O2 at membranes and cell protrusions and that H2O2 inhibits cofilin activity through oxidation of cysteines 139 (C139) and 147 (C147). Molecular modeling suggests that C139 oxidation would sterically hinder actin association, while the increased negative charge of oxidized C147 would lead to electrostatic repulsion of the opposite negatively charged surface. Expression of oxidation-resistant cofilin impairs cell spreading, adhesion, and directional migration. These findings indicate that H2O2 production contributes to polarized cell motility through localized cofilin inhibition and that there are additional proteins oxidized during cell migration that might have similar roles
Dapagliflozin, Inflammation and Left Ventricular Remodelling in Patients with Type 2 Diabetes and Left Ventricular Hypertrophy
Background and AimsSodium-glucose co-transporter 2 (SGLT2) inhibitors have beneficial effects in heart failure (HF), including reverse remodelling, but the mechanisms by which these benefits are conferred are unclear. Inflammation is implicated in the pathophysiology of heart failure (HF) and there are some pre-clinical data suggesting that SGLT2 inhibitors may reduce inflammation. There is however a lack of clinical data. The aim of our study was to investigate whether improvements in cardiac remodelling caused by dapagliflozin in individuals with type 2 diabetes (T2D) and left ventricular hypertrophy (LVH) were associated with its effects on inflammation.MethodsWe measured C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), interleukin 6 (IL-6), and interleukin 10 (IL-10) and neutrophil-to-lymphocyte ratio (NLR) in plasma samples of 60 patients with T2D and left ventricular hypertrophy (LVH) but without symptomatic HF from the DAPA-LVH trial in which participants were randomised dapagliflozin 10mg daily or placebo for 12 months and underwent cardiac magnetic resonance imaging (CMR) at baseline and end of treatment. The primary analysis was to investigate the effect of dapagliflozin on inflammation and to assess the relationships between changes in inflammatory markers and LV mass and global longitudinal strain (GLS) and whether the effect of dapagliflozin on LV mass and GLS was modulated by baseline levels of inflammation.ResultsFollowing 12 months of treatment dapagliflozin significantly reduced CRP compared to placebo (mean difference of -1.96; 95% CI -3.68 to -0.24, p=0.026). There were no significant statistical changes in other inflammatory markers. There were modest correlations between improvements in GLS and reduced inflammation (NLR (r=0.311), IL-1β (r=0.246), TNF-α (r=0.230)) at 12 months.ConclusionsDapagliflozin caused a significant reduction in CRP compared to placebo. There were correlations between reductions in inflammatory markers including IL-1β and improvements in global longitudinal strain (but not reduced LV mass). Reductions in systemic inflammation might play a contributory role in the cardiovascular benefits of dapagliflozin
On the Integrable Structure of the Ising Model
Starting from the lattice realization of the Ising model defined on a
strip with integrable boundary conditions, the exact spectrum (including
excited states) of all the local integrals of motion is derived in the
continuum limit by means of TBA techniques. It is also possible to follow the
massive flow of this spectrum between the UV conformal fixed point and
the massive IR theory. The UV expression of the eigenstates of such integrals
of motion in terms of Virasoro modes is found to have only rational
coefficients and their fermionic representation turns out to be simply related
to the quantum numbers describing the spectrum.Comment: 18 pages, no figure
Excited Boundary TBA in the Tricritical Ising Model
By considering the continuum scaling limit of the RSOS lattice model
of Andrews-Baxter-Forrester with integrable boundaries, we derive excited state
TBA equations describing the boundary flows of the tricritical Ising model.
Fixing the bulk weights to their critical values, the integrable boundary
weights admit a parameter which plays the role of the perturbing
boundary field and induces the renormalization group flow between
boundary fixed points. The boundary TBA equations determining the RG flows are
derived in the example. The
induced map between distinct Virasoro characters of the theory are specified in
terms of distribution of zeros of the double row transfer matrix.Comment: Latex, 14 pages - Talk given at the Landau meeting "CFT and
Integrable Models", Sept. 2002 - v2: some statements about
perturbations correcte
Dopant Profile Extraction by Inverse Modeling of Scanning Capacitance Microscopy Using Peak dC/dV
Scanning capacitance microscopy (SCM) has proven to be successful for junction delineation. However quantitative dopant profile extraction by SCM still remains a difficult challenge, due to limited understanding of relevant physics especially at p-n junction, as well as difficulties to accurately quantify all parameters in modeling. In this paper we present a new procedure, the use of peak dC/dV at every spatial point, for dopant profile extraction. The advantage of such a technique is twofold. First it eliminates problems encountered using a fixed dc bias such as contrast reversal. Second, it also excludes the need to model interface traps. This is because the peak dC/dV value is independent of the presence of interface traps, as demonstrated in our experimental results. Furthermore, based on our understanding of the influence of mobility degradation at p-n junction, we propose that low surface mobility model should be used in simulation so that only the accumulation-to-depletion dC/dV is extracted
A Simple and Efficient Way to Combine Microcontrollers with RSA Cryptography
Microcontroller can be easily adopted in various applications with a variety of peripherals due to its merits of small size, simple architecture and etc. However, the limited computing power restricts its application in cryptography. In this paper, we try to integrate microcontroller with different peripheral devices to support more powerful cryptography computation in a simple and efficient way. Based on the most popular open source microcontroller development platform, Arduino, we design and develop a cryptographic hardware device for a real-life application which provides data protection functions for authority and integrity with RSA cryptography supported. With the peripherals Java card, our Arduino-cored solution is able to efficiently generate digital signature of photos taken by smart phone using the asymmetric cryptographic algorithm, RSA, which has a poor performance if it is directly implemented on microcontroller. The experimental results show that the device can finish a RSA 1024-bit encryption in 82.2 microseconds, which is reasonable in real application scenario and illustrates the feasibility of implementing more complicated cryptographic system using microcontroller.published_or_final_versio
- …