42 research outputs found
Evolution of a Novel Appendage Ground Plan in Water Striders Is Driven by Changes in the Hox Gene Ultrabithorax
Water striders, a group of semi-aquatic bugs adapted to life on the water surface, have evolved mid-legs (L2) that are long relative to their hind-legs (L3). This novel appendage ground plan is a derived feature among insects, where L2 function as oars and L3 as rudders. The Hox gene Ultrabithorax (Ubx) is known to increase appendage size in a variety of insects. Using gene expression and RNAi analysis, we discovered that Ubx is expressed in both L2 and L3, but Ubx functions to elongate L2 and to shorten L3 in the water strider Gerris buenoi. Therefore, within hemimetabolous insects, Ubx has evolved a new expression domain but maintained its ancestral elongating function in L2, whereas Ubx has maintained its ancestral expression domain but evolved a new shortening function in L3. These changes in Ubx expression and function may have been a key event in the evolution of the distinct appendage ground plan in water striders
Ubx Regulates Differential Enlargement and Diversification of Insect Hind Legs
Differential enlargement of hind (T3) legs represents one of the hallmarks of insect evolution. However, the actual mechanism(s) responsible are yet to be determined. To address this issue, we have now studied the molecular basis of T3 leg enlargement in Oncopeltus fasciatus (milkweed bug) and Acheta domesticus (house cricket). In Oncopeltus, the T3 tibia displays a moderate increase in size, whereas in Acheta, the T3 femur, tibia, and tarsus are all greatly enlarged. Here, we show that the hox gene Ultrabithorax (Ubx) is expressed in the enlarged segments of hind legs. Furthermore, we demonstrate that depletion of Ubx during embryogenesis has a primary effect in T3 legs and causes shortening of leg segments that are enlarged in a wild type. This result shows that Ubx is regulating the differential growth and enlargement of T3 legs in both Oncopeltus and Acheta. The emerging view suggests that Ubx was co-opted for a novel role in regulating leg growth and that the transcriptional modification of its expression may be a universal mechanism for the evolutionary diversification of insect hind legs
Mutations in the Polycomb Group Gene polyhomeotic Lead to Epithelial Instability in both the Ovary and Wing Imaginal Disc in Drosophila
Most human cancers originate from epithelial tissues and cell polarity and adhesion defects can lead to metastasis. The Polycomb-Group of chromatin factors were first characterized in Drosophila as repressors of homeotic genes during development, while studies in mammals indicate a conserved role in body plan organization, as well as an implication in other processes such as stem cell maintenance, cell proliferation, and tumorigenesis. We have analyzed the function of the Drosophila Polycomb-Group gene polyhomeotic in epithelial cells of two different organs, the ovary and the wing imaginal disc.Clonal analysis of loss and gain of function of polyhomeotic resulted in segregation between mutant and wild-type cells in both the follicular and wing imaginal disc epithelia, without excessive cell proliferation. Both basal and apical expulsion of mutant cells was observed, the former characterized by specific reorganization of cell adhesion and polarity proteins, the latter by complete cytoplasmic diffusion of these proteins. Among several candidate target genes tested, only the homeotic gene Abdominal-B was a target of PH in both ovarian and wing disc cells. Although overexpression of Abdominal-B was sufficient to cause cell segregation in the wing disc, epistatic analysis indicated that the presence of Abdominal-B is not necessary for expulsion of polyhomeotic mutant epithelial cells suggesting that additional polyhomeotic targets are implicated in this phenomenon.Our results indicate that polyhomeotic mutations have a direct effect on epithelial integrity that can be uncoupled from overproliferation. We show that cells in an epithelium expressing different levels of polyhomeotic sort out indicating differential adhesive properties between the cell populations. Interestingly, we found distinct modalities between apical and basal expulsion of ph mutant cells and further studies of this phenomenon should allow parallels to be made with the modified adhesive and polarity properties of different types of epithelial tumors
Segment-Specific Neuronal Subtype Specification by the Integration of Anteroposterior and Temporal Cues
To address the question of how neuronal diversity is achieved throughout the CNS, this study provides evidence of modulation of neural progenitor cell “output” along the body axis by integration of local anteroposterior and temporal cues
Interactions of Polycomb and trithorax with cis regulatory regions of Ultrabithorax during the development of Drosophila melanogaster.
The activity of the Ultrabithorax gene is continuously required during imaginal development to maintain the morphogenetic identity of the third thoracic segment of Drosophila. The spatial pattern of Ultrabithorax gene expression depends on certain cis regulatory regions and several trans regulatory genes. Amongst the latter the Polycomb gene is necessary to maintain Ultrabithorax repressed in cells where it was not initially activated and the trithorax gene is required for maintaining the expression of the gene where initially active. We have studied genetic interactions between several Ultrabithorax mutations in coding and cis regulatory regions in combination with Polycomb and trithorax mutations. Our results suggest that Polycomb and trithorax gene products do not interact with Ultrabithorax protein products but interact (directly or indirectly) with specific and discrete cis regulatory regions such as those where anterobithorax and postbithorax but not bithorax mutations map. We discuss possible mechanisms of these interactions
Genetic analysis of transvection effects involving cis-regulatory elements of the Drosophila Ultrabithorax gene.
The Ultrabithorax (Ubx) gene of Drosophila melanogaster contains two functionally distinguishable regions: the protein-coding Ubx transcription unit and, upstream of it, the transcribed but nonprotein-coding bxd region. Numerous recessive, partial loss-of-function mutations which appear to be regulatory mutations map within the bxd region and within the introns of the Ubx transcription unit. In addition, mutations within the Ubx unit exons are known and most of these behave as null alleles. Ubx1 is one such allele. We have confirmed that, although the Ubx1 allele does not produce detectable Ubx proteins (UBX), it does retain other genetic functions detectable by their effects on the expression of a paired, homologous Ubx allele, i.e., by transvection. We have extended previous analyses made by E. B. Lewis by mapping the critical elements of the Ubx gene which participate in transvection effects. Our results show that the Ubx1 allele retains wild-type functions whose effectiveness can be reduced (1) by additional cis mutations in the bxd region or in introns of the Ubx transcription unit, as well as (2) by rearrangements disturbing pairing between homologous Ubx genes. Our results suggest that those remnant functions in Ubx1 are able to modulate the activity of the allele located in the homologous chromosome. We discuss the normal cis regulatory role of these functions involved in trans interactions between homologous Ubx genes, as well as the implications of our results for the current models on transvection.Peer reviewe
Positive and negative cis-regulatory elements in the bithoraxoid region of the Drosophila Ultrabithorax gene
The Ultrabithorax (Ubx) gene is required during embryogenesis and larval development to specify the third thoracic and first abdominal segments of Drosophila melanogaster. Mutations in the bithoraxoid (bxd) region, a 40 kb DNA stretch upstream of the Ubx promoter, affect cis-regulatory elements responsible for the ectodermal expression of the Ubx gene in the posterior compartment of the third thoracic segment and anterior compartment of the first abdominal segment. Our genetic data and the available molecular information are used to map the adult epidermal cis-regulatory elements within the bxd region. Genetic combinations involving mutations affecting the bxd region show that (1) redundant or cooperatively acting sequences are required for Ubx gene expression in the anterior compartment of the first abdominal segment, and (2) the expression of Ubx in the posterior compartment of the third thoracic segment is modulated by positive and negative cis-regulatory elements.Peer reviewe