68 research outputs found

    Simulation model for the study of overhead rail current collector systems dynamics, focused on the design of a new conductor rail

    Get PDF
    Overhead rigid conductor arrangements for current collection for railway traction have some advantages compared to other, more conventional, energy supply systems. They are simple, robust and easily maintained, not to mention their flexibility as to the required height for installation, which makes them particularly suitable for use in subway infrastructures. Nevertheless, due to the increasing speeds of new vehicles running on modern subway lines, a more efficient design is required for this kind of system. In this paper, the authors present a dynamic analysis of overhead conductor rail systems focused on the design of a new conductor profile with a dynamic behaviour superior to that of the system currently in use. This means that either an increase in running speed can be attained, which at present does not exceed 110 km/h, or an increase in the distance between the rigid catenary supports with the ensuing saving in installation costs. This study has been carried out using simulation techniques. The ANSYS programme has been used for the finite element modelling and the SIMPACK programme for the elastic multibody systems analysis

    Agroforestry systems of high nature and cultural value in Europe: provision of commercial goods and other ecosystem services

    Get PDF
    Land use systems that integrate woody vegetation with livestock and/or crops and are recognised for their biodiversity and cultural importance can be termed high nature and cultural value (HNCV) agroforestry. In this review, based on the literature and stakeholder knowledge, we describe the structure, components and management practices of ten contrasting HNCV agroforestry systems distributed across five European bioclimatic regions. We also compile and categorize the ecosystem services provided by these agroforestry systems, following the Common International Classification of Ecosystem Services. HNCV agroforestry in Europe generally enhances biodiversity and regulating ecosystem services relative to conventional agriculture and forestry. These systems can reduce fire risk, compared to conventional forestry, and can increase carbon sequestration, moderate the microclimate, and reduce soil erosion and nutrient leaching compared to conventional agriculture. However, some of the evidence is location specific and a better geographical coverage is needed to generalize patterns at broader scales. Although some traditional practices and products have been abandoned, many of the studied systems continue to provide multiple woody and non-woody plant products and high-quality food from livestock and game. Some of the cultural value of these systems can also be captured through tourism and local events. However there remains a continual challenge for farmers, landowners and society to fully translate the positive social and environmental impacts of HNCV agroforestry into market prices for the products and services

    Augmented lagrangian and mass-orthogonal projection methods for constrained multibody dynamics

    Full text link
    This paper presents a new method for the integration of the equations of motion of constrained multibody systems in descriptor form. The method is based on the penalty-Augmented Lagrangian formulation and uses massorthogonal projections for the solution to satisfy the kinematic constraint conditions. The number of equations being solved is equal to the number of states, and does not depend on the number of constraint conditions. Therefore, the method is particularly suitable for systems with redundant constraints, singular configurations or topology changes. The major advantage of the new method relies on the fact that for a low computational cost, the constraints in positions, velocities and accelerations are satisfied to machine precision during the numerical integration. This process is efficiently done by means of a mass-orthogonal projection without the need for coordinate partitioning or reduction to a minimum set of coordinates. The projection scheme allows for a more accurate and robust integration of the equations of motion since constraint violations constitute one of the primary sources of numerical errors and instabilities during the integration process. The proposed projection is also applied to the classical Lagrangian approach, thus eliminating the need for further stabilization as well as the selection of parameters in Baumgarte's method.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43334/1/11071_2005_Article_BF01833296.pd

    River Restoration in Spain: Theoretical and Practical Approach in the Context of the European Water Framework Directive.

    Get PDF
    River restoration is becoming a priority in many countries because of increasing the awareness of environmental degradation. In Europe, the EU Water Framework Directive (WFD) has significantly reinforced river restoration, encouraging the improvement of ecological status for water bodies. To fulfill the WFD requirements, the Spanish Ministry of the Environment developed in 2006 a National Strategy for River Restoration whose design and implementation are described in this paper. At the same time many restoration projects have been conducted, and sixty of them have been evaluated in terms of stated objectives and pressures and implemented restoration measures. Riparian vegetation enhancement, weir removal and fish passes were the most frequently implemented restoration measures, although the greatest pressures came from hydrologic alteration caused by flow regulation for irrigation purposes. Water deficits in quantity and quality associated with uncontrolled water demands seriously affect Mediterranean rivers and represent the main constraint to achieving good ecological status of Spanish rivers, most of them intensively regulated. Proper environmental allocation of in-stream flows would need deep restrictions in agricultural water use which seem to be of very difficult social acceptance. This situation highlights the need to integrate land-use and rural development policies with water resources and river management, and identifies additional difficulties in achieving the WFD objectives and good ecological status of rivers in Mediterranean countries

    A mathematical framework for contact detection between quadric and superquadric surfaces

    Get PDF
    The calculation of the minimum distance between surfaces plays an important role in computational mechanics, namely, in the study of constrained multibody systems where contact forces take part. In this paper, a general rigid contact detection methodology for non-conformal bodies, described by ellipsoidal and superellipsoidal surfaces, is presented. The mathematical framework relies on simple algebraic and differential geometry, vector calculus, and on the C2 continuous implicit representations of the surfaces. The proposed methodology establishes a set of collinear and orthogonal constraints between vectors defining the contacting surfaces that, allied with loci constraints, which are specific to the type of surface being used, formulate the contact problem. This set of non-linear equations is solved numerically with the Newton-Raphson method with Jacobian matrices calculated analytically. The method outputs the coordinates of the pair of points with common normal vector directions and, consequently, the minimum distance between both surfaces. Contrary to other contact detection methodologies, the proposed mathematical framework does not rely on polygonal-based geometries neither on complex non-linear optimization formulations. Furthermore, the methodology is extendable to other surfaces that are (strictly) convex, interact in a non-conformal fashion, present an implicit representation, and that are at least C2 continuous. Two distinct methods for calculating the tangent and binormal vectors to the implicit surfaces are introduced: (i) a method based on the Householder reflection matrix; and (ii) a method based on a square plate rotation mechanism. The first provides a base of three orthogonal vectors, in which one of them is collinear to the surface normal. For the latter, it is shown that, by means of an analogy to the referred mechanism, at least two non-collinear vectors to the normal vector can be determined. Complementarily, several mathematical and computational aspects, regarding the rigid contact detection methodology, are described. The proposed methodology is applied to several case tests involving the contact between different (super)ellipsoidal contact pairs. Numerical results show that the implemented methodology is highly efficient and accurate for ellipsoids and superellipsoids.Fundação para a Ciência e a Tecnologia (FCT

    Biocompatibility, Inflammatory Response, and Recannalization Characteristics of Nonradioactive Resin Microspheres: Histological Findings

    Get PDF
    Intra-arterial radiotherapy with yttrium-90 microspheres (radioembolization) is a therapeutic procedure exclusively applied to the liver that allows the direct delivery of high-dose radiation to liver tumors, by means of endovascular catheters, selectively placed within the tumor vasculature. The aim of the study was to describe the distribution of spheres within the precapillaries, inflammatory response, and recannalization characteristics after embolization with nonradioactive resin microspheres in the kidney and liver. We performed a partial embolization of the liver and kidney vessels in nine white pigs. The left renal and left hepatic arteries were catheterized and filled with nonradioactive resin microspheres. Embolization was defined as the initiation of near-stasis of blood flow, rather than total occlusion of the vessels. The hepatic circulation was not isolated so that the effects of reflux of microspheres into stomach could be observed. Animals were sacrificed at 48 h, 4 weeks, and 8 weeks, and tissue samples from the kidney, liver, lung, and stomach evaluated. Microscopic evaluation revealed clusters of 10–30 microspheres (15–30 μm in diameter) in the small vessels of the kidney (the arciform arteries, vasa recti, and glomerular afferent vessels) and liver. Aggregates were associated with focal ischemia and mild vascular wall damage. Occlusion of the small vessels was associated with a mild perivascular inflammatory reaction. After filling of the left hepatic artery with microspheres, there was some evidence of arteriovenous shunting into the lungs, and one case of cholecystitis and one case of marked gastritis and ulceration at the site of arterial occlusion due to the presence of clusters of microspheres. Beyond 48 h, microspheres were progressively integrated into the vascular wall by phagocytosis and the lumen recannalized. Eight-week evaluation found that the perivascular inflammatory reaction was mild. Liver cell damage, bile duct injury, and portal space fibrosis were not observed. In conclusion, resin microspheres (15–30 μm diameter) trigger virtually no inflammatory response in target tissues (liver and kidney). Clusters rather than individual microspheres were associated with a mild to moderate perivascular inflammatory reaction. There was no evidence of either a prolonged inflammatory reaction or fibrosis in the liver parenchyma following recannalization

    Coupling dynamics of a geared multibody system supported by Elastohydrodynamic lubricated cylindrical joints

    Get PDF
    A comprehensive computational methodology to study the coupling dynamics of a geared multibody system supported by ElastoHydroDynamic (EHD) lubricated cylindrical joints is proposed throughout this work. The geared multibody system is described by using the Absolute-Coordinate-Based (ACB) method that combines the Natural Coordinate Formulation (NCF) describing rigid bodies and the Absolute Nodal Coordinate Formulation (ANCF) characterizing the flexible bodies. Based on the finite-short bearing approach, the EHD lubrication condition for the cylindrical joints supporting the geared system is considered here. The lubrication forces developed at the cylindrical joints are obtained by solving the Reynolds’ equation via the finite difference method. For the evaluation of the normal contact forces of gear pair along the Line Of Action (LOA), the time-varying mesh stiffness, mesh damping and Static Transmission Error (STE) are utilized. The time-varying mesh stiffness is calculated by using the Chaari’s methodology. The forces of sliding friction along the Off-Line-Of-Action (OLOA) are computed by using the Coulomb friction models with a time-varying coefficient of friction under the EHD lubrication condition of gear teeth. Finally, two numerical examples of application are presented to demonstrate and validate the proposed methodology.National Natural Science Foundations of China under Grant 11290151, 11221202 and 11002022, Beijing Higher Education Young Elite Teacher Project under Grant YETP1201
    corecore