307 research outputs found

    Turbulence characteristics of the B\"{o}dewadt layer in a large enclosed rotor-stator system

    Get PDF
    A three-dimensional (3D) direct numerical simulation is combined with a laboratory study to describe the turbulent flow in an enclosed annular rotor-stator cavity characterized by a large aspect ratio G=(b-a)/h=18.32 and a small radius ratio a/b=0.152, where a and b are the inner and outer radii of the rotating disk and h is the interdisk spacing. The rotation rate Omega under consideration is equivalent to the rotational Reynolds number Re=Omegab2/nu=9.5 x 104, where nu is the kinematic viscosity of the fluid. This corresponds to a value at which an experiment carried out at the laboratory has shown that the stator boundary layer is turbulent, whereas the rotor boundary layer is still laminar. Comparisons of the 3D computed solution with velocity measurements have given good agreement for the mean and turbulent fields. The results enhance evidence of weak turbulence at this Reynolds number, by comparing the turbulence properties with available data in the literature. An approximately self-similar boundary layer behavior is observed along the stator side. The reduction of the structural parameter a1 under the typical value 0.15 and the variation in the wall-normal direction of the different characteristic angles show that this boundary layer is three-dimensional. A quadrant analysis of conditionally averaged velocities is performed to identify the contributions of different events (ejections and sweeps) on the Reynolds shear stress producing vortical structures. The asymmetries observed in the conditionally averaged quadrant analysis are dominated by Reynolds stress-producing events in this B\"{o}dewadt layer. Moreover, case 1 vortices (with a positive wall induced velocity) are found to be the major source of generation of special strong events, in agreement with the conclusions of Lygren and Andersson.Comment: 16 page

    Green's function probe of a static granular piling

    Full text link
    We present an experiment which aim is to investigate the mechanical properties of a static granular assembly. The piling is an horizontal 3D granular layer confined in a box, we apply a localized extra force at the surface and the spatial distribution of stresses at the bottom is obtained (the mechanical Green's function). For different types of granular media, we observe a linear pressure response which profile shows one peak centered at the vertical of the point of application. The peak's width increases linearly when increasing the depth. This green function seems to be in -at least- qualitative agreement with predictions of elastic theory.Comment: 9 pages, 3 .eps figures, submitted to PR

    Stresses in silos: Comparison between theoretical models and new experiments

    Full text link
    We present precise and reproducible mean pressure measurements at the bottom of a cylindrical granular column. If a constant overload is added, the pressure is linear in overload and nonmonotonic in the column height. The results are {\em quantitatively} consistent with a local, linear relation between stress components, as was recently proposed by some of us. They contradict the simplest classical (Janssen) approximation, and may pose a rather severe test of competing models.Comment: 4 pages, 2 figures, final version to appear in Phys. Rev. Let

    Granular packings with moving side walls

    Full text link
    The effects of movement of the side walls of a confined granular packing are studied by discrete element, molecular dynamics simulations. The dynamical evolution of the stress is studied as a function of wall movement both in the direction of gravity as well as opposite to it. For all wall velocities explored, the stress in the final state of the system after wall movement is fundamentally different from the original state obtained by pouring particles into the container and letting them settle under the influence of gravity. The original packing possesses a hydrostatic-like region at the top of the container which crosses over to a depth-independent stress. As the walls are moved in the direction opposite to gravity, the saturation stress first reaches a minimum value independent of the wall velocity, then increases to a steady-state value dependent on the wall-velocity. After wall movement ceases and the packing reaches equilibrium, the stress profile fits the classic Janssen form for high wall velocities, while it has some deviations for low wall velocities. The wall movement greatly increases the number of particle-wall and particle-particle forces at the Coulomb criterion. Varying the wall velocity has only small effects on the particle structure of the final packing so long as the walls travel a similar distance.Comment: 11 pages, 10 figures, some figures in colo

    Imprinting the memory into paste and its visualization as crack patterns in drying process

    Full text link
    In the drying process of paste, we can imprint into the paste the order how it should be broken in the future. That is, if we vibrate the paste before it is dried, it remembers the direction of the initial external vibration, and the morphology of resultant crack patterns is determined solely by the memory of the direction. The morphological phase diagram of crack patterns and the rheological measurement of the paste show that this memory effect is induced by the plasticity of paste.Comment: 4 pages, 3 figures, submitted to JPS

    Footprints in Sand: The Response of a Granular Material to Local Perturbations

    Full text link
    We experimentally determine ensemble-averaged responses of granular packings to point forces, and we compare these results to recent models for force propagation in a granular material. We used 2D granular arrays consisting of photoelastic particles: either disks or pentagons, thus spanning the range from ordered to disordered packings. A key finding is that spatial ordering of the particles is a key factor in the force response. Ordered packings have a propagative component that does not occur in disordered packings.Comment: 5 pages, 4 eps figures, Phys. Rev. Lett. 87, 035506 (2001

    Mechanisms for slow strengthening in granular materials

    Full text link
    Several mechanisms cause a granular material to strengthen over time at low applied stress. The strength is determined from the maximum frictional force F_max experienced by a shearing plate in contact with wet or dry granular material after the layer has been at rest for a waiting time \tau. The layer strength increases roughly logarithmically with \tau -only- if a shear stress is applied during the waiting time. The mechanisms of strengthening are investigated by sensitive displacement measurements and by imaging of particle motion in the shear zone. Granular matter can strengthen due to a slow shift in the particle arrangement under shear stress. Humidity also leads to strengthening, but is found not to be its sole cause. In addition to these time dependent effects, the static friction coefficient can also be increased by compaction of the granular material under some circumstances, and by cycling of the applied shear stress.Comment: 21 pages, 11 figures, submitted to Phys. Rev.

    Morphology of two dimensional fracture surface

    Full text link
    We consider the morphology of two dimensional cracks observed in experimental results obtained from paper samples and compare these results with the numerical simulations of the random fuse model (RFM). We demonstrate that the data obey multiscaling at small scales but cross over to self-affine scaling at larger scales. Next, we show that the roughness exponent of the random fuse model is recovered by a simpler model that produces a connected crack, while a directed crack yields a different result, close to a random walk. We discuss the multiscaling behavior of all these models.Comment: slightly revise

    Clear Cell Sarcoma (Malignant Melanoma) of Soft Parts: A Clinicopathologic Study of 52 Cases

    Get PDF
    Clear cell sarcomas are aggressive, rare soft tissue tumors and their classification among melanoma or sarcoma is still undetermined due to their clinical, pathologic, and molecular properties found in both types of tumors. This is a retrospective study of 52 patients with CCS seen between April 1979 and April 2005 in two institutions. The EWS-ATF-1 fusion transcript was studied in 31 patients and an activating mutation of the BRAF or NRAS gene was researched in 22 patients. 30 men and 22 women, with a mean age of 33 were studied. Forty-three tumors (82.69%) were located in the extremities, specially the foot (19 tumors). Median initial tumor size was 4.8 cm (1 to 15 cm). Necrosis involving more than 50% of the tumor cells was found in 14 cases (26.92%). High mitotic rate (>10) was found in 25 cases (48.07%). The EWS/ATF-1 translocation was found in 28 (53.84%) of 31 patients studied, and mutation of BRAF or NRAS was found in only 2 of 22 patients analyzed cases (3.84%). Among the tumor-associated parameters, only tumor size (>4 cm) emerged as a significant prognostic factor. Forty-nine patients had a localized disease at diagnosis (94.23%) and underwent surgical resection immediately (90%) or after neoadjuvant chemotherapy (CT) (10%). Various CT regimens were used in 37 patients (71.15%) with no significant efficacy. The 5- and 10-year OS rates were 59% and 41%, respectively. Tumor size was the only emerging prognosis factor in our series. Complete surgical resection remains the optimal treatment for this aggressive chemoresistant tumor

    Stress Transmission through Three-Dimensional Ordered Granular Arrays

    Full text link
    We measure the local contact forces at both the top and bottom boundaries of three-dimensional face-centered-cubic and hexagonal-close-packed granular crystals in response to an external force applied to a small area at the top surface. Depending on the crystal structure, we find markedly different results which can be understood in terms of force balance considerations in the specific geometry of the crystal. Small amounts of disorder are found to create additional structure at both the top and bottom surfaces.Comment: 9 pages including 9 figures (many in color) submitted to PR
    • 

    corecore