91,104 research outputs found

    Further Series Studies of the Spin-1/2 Heisenberg Antiferromagnet at T=0: Magnon Dispersion and Structure Factors

    Full text link
    We have extended our previous series studies of quantum antiferromagnets at zero temperature by computing the one-magnon dispersion curves and various structure factors for the linear chain, square and simple cubic lattices. Many of these results are new; others are a substantial extension of previous work. These results are directly comparable with neutron scattering experiments and we make such comparisons where possible.Comment: 15 pages, 12 figures, revised versio

    Tables of X-coefficients and Lambda-factors for Triple Angular Correlation Analysis

    Get PDF
    Tables of x-coefficients and lambda-factors for triple angular correlation measurements in nuclear reaction studie

    Electronic Structure and Thermoelectric Prospects of Phosphide Skutterudites

    Full text link
    The prospects for high thermoelectric performance in phosphide skutterudites are investigated based on first principles calculations. We find that stoichiometric CoP_3 differs from the corresponding arsenide and antimonide in that it is metallic. As such the band structure must be modified if high thermopowers are to be achieved. In analogy to the antimonides it is expected that this may be done by filling with La. Calculations for LaFe_4P_12 show that a gap can in fact be opened by La filling, but that the valence band is too light to yield reasonable p-type thermopowers at appropriate carrier densities; n-type La filled material may be more favorable.Comment: 3 pages, 3 figures, 1 tabl

    Knowlesi malaria in Vietnam

    Get PDF
    The simian malaria parasite Plasmodium knowlesi is transmitted in the forests of Southeast Asia. Symptomatic zoonotic knowlesi malaria in humans is widespread in the region and is associated with a history of spending time in the jungle. However, there are many settings where knowlesi transmission to humans would be expected but is not found. A recent report on the Ra-glai population of southern central Vietnam is taken as an example to help explain why this may be so

    Spin-wave excitation spectra and spectral weights in square lattice antiferromagnets

    Full text link
    Using a recently developed method for calculating series expansions of the excitation spectra of quantum lattice models, we obtain the spin-wave spectra for square lattice, S=1/2S=1/2 Heisenberg-Ising antiferromagnets. The calculated spin-wave spectrum for the Heisenberg model is close to but noticeably different from a uniformly renormalized classical (large-SS) spectrum with the renormalization for the spin-wave velocity of approximately 1.181.18. The relative weights of the single-magnon and multi-magnon contributions to neutron scattering spectra are obtained for wavevectors throughout the Brillouin zone.Comment: Two postscript figures, 4 two-column page

    First Principles Study of Zn-Sb Thermoelectrics

    Full text link
    We report first principles LDA calculations of the electronic structure and thermoelectric properties of β\beta -Zn4_{4}Sb3_{3}. The material is found to be a low carrier density metal with a complex Fermi surface topology and non-trivial dependence of Hall concentration on band filling. The band structure is rather covalent, consistent with experimental observations of good carrier mobility. Calculations of the variation with band filling are used to extract the doping level (band filling) from the experimental Hall number. At this band filling, which actually corresponds to 0.1 electrons per 22 atom unit cell, the calculated thermopower and its temperature dependence are in good agreement with experiment. The high Seebeck coefficient in a metallic material is remarkable, and arises in part from the strong energy dependence of the Fermiology near the experimental band filling. Improved thermoelectric performance is predicted for lower doping levels which corresponds to higher Zn concentrations.Comment: 5 pages, 6 figure

    Bifurcation Analysis of Reaction Diffusion Systems on Arbitrary Surfaces

    Full text link
    In this paper we present computational techniques to investigate the solutions of two-component, nonlinear reaction-diffusion (RD) systems on arbitrary surfaces. We build on standard techniques for linear and nonlinear analysis of RD systems, and extend them to operate on large-scale meshes for arbitrary surfaces. In particular, we use spectral techniques for a linear stability analysis to characterize and directly compose patterns emerging from homogeneities. We develop an implementation using surface finite element methods and a numerical eigenanalysis of the Laplace-Beltrami operator on surface meshes. In addition, we describe a technique to explore solutions of the nonlinear RD equations using numerical continuation. Here, we present a multiresolution approach that allows us to trace solution branches of the nonlinear equations efficiently even for large-scale meshes. Finally, we demonstrate the working of our framework for two RD systems with applications in biological pattern formation: a Brusselator model that has been used to model pattern development on growing plant tips, and a chemotactic model for the formation of skin pigmentation patterns. While these models have been used previously on simple geometries, our framework allows us to study the impact of arbitrary geometries on emerging patterns.Comment: This paper was submitted at the Journal of Mathematical Biology, Springer on 07th July 2015, in its current form (barring image references on the last page and cosmetic changes owning to rebuild for arXiv). The complete body of work presented here was included and defended as a part of my PhD thesis in Nov 2015 at the University of Ber
    • …
    corecore