10,297 research outputs found

    First results from the CALYPSO IRAM-PdBI survey. I. Kinematics of the inner envelope of NGC1333-IRAS2A

    Full text link
    The structure and kinematics of Class 0 protostars on scales of a few hundred AU is poorly known. Recent observations have revealed the presence of Keplerian disks with a diameter of 150-180 AU in L1527-IRS and VLA1623A, but it is not clear if such disks are common in Class 0 protostars. Here we present high-angular-resolution observations of two methanol lines in NGC1333-IRAS2A. We argue that these lines probe the inner envelope, and we use them to study the kinematics of this region. Our observations suggest the presence of a marginal velocity gradient normal to the direction of the outflow. However, the position velocity diagrams along the gradient direction appear inconsistent with a Keplerian disk. Instead, we suggest that the emission originates from the infalling and perhaps slowly rotating envelope, around a central protostar of 0.1-0.2 M_\odot. If a disk is present, it is smaller than the disk of L1527-IRS, perhaps suggesting that NGC1333-IRAS2A is younger.Comment: Accepted for publication in A&A letter

    Superfluid-insulator transition in a periodically driven optical lattice

    Full text link
    We demonstrate that the transition from a superfluid to a Mott insulator in the Bose-Hubbard model can be induced by an oscillating force through an effective renormalization of the tunneling matrix element. The mechanism involves adiabatic following of Floquet states, and can be tested experimentally with Bose-Einstein condensates in periodically driven optical lattices. Its extension from small to very large systems yields nontrivial information on the condensate dynamics.Comment: 4 pages, 4 figures, RevTe

    First results from the CALYPSO IRAM-PdBI survey - III. Monopolar jets driven by a proto-binary system in NGC1333-IRAS2A

    Get PDF
    Context: The earliest evolutionary stages of low-mass protostars are characterised by hot and fast jets which remove angular momentum from the circumstellar disk, thus allowing mass accretion onto the central object. However, the launch mechanism is still being debated. Aims: We would like to exploit high-angular (~ 0.8") resolution and high-sensitivity images to investigate the origin of protostellar jets using typical molecular tracers of shocked regions, such as SiO and SO. Methods: We mapped the inner 22" of the NGC1333-IRAS2A protostar in SiO(5-4), SO(65-54), and the continuum emission at 1.4 mm using the IRAM Plateau de Bure interferometer in the framework of the CALYPSO IRAM large program. Results: For the first time, we disentangle the NGC1333-IRAS2A Class 0 object into a proto-binary system revealing two protostars (MM1, MM2) separated by ~ 560 AU, each of them driving their own jet, while past work considered a single protostar with a quadrupolar outflow. We reveal (i) a clumpy, fast (up to |V-VLSR| > 50 km/s), and blueshifted jet emerging from the brightest MM1 source, and (ii) a slower redshifted jet, driven by MM2. Silicon monoxide emission is a powerful tracer of high-excitation (Tkin > 100 K; n(H2) > 10^5 cm-3) jets close to the launching region. At the highest velocities, SO appears to mimic SiO tracing the jets, whereas at velocities close to the systemic one, SO is dominated by extended emission, tracing the cavity opened by the jet. Conclusions: Both jets are intrinsically monopolar, and intermittent in time. The dynamical time of the SiO clumps is < 30-90 yr, indicating that one-sided ejections from protostars can take place on these timescales.Comment: Astronomy & Astrophysics Letter, in pres

    Influence of detector motion in entanglement measurements with photons

    Full text link
    We investigate how the polarization correlations of entangled photons described by wave packets are modified when measured by moving detectors. For this purpose, we analyze the Clauser-Horne-Shimony-Holt Bell inequality as a function of the apparatus velocity. Our analysis is motivated by future experiments with entangled photons designed to use satellites. This is a first step towards the implementation of quantum information protocols in a global scale

    Stability of atomic clocks based on entangled atoms

    Full text link
    We analyze the effect of realistic noise sources for an atomic clock consisting of a local oscillator that is actively locked to a spin-squeezed (entangled) ensemble of NN atoms. We show that the use of entangled states can lead to an improvement of the long-term stability of the clock when the measurement is limited by decoherence associated with instability of the local oscillator combined with fluctuations in the atomic ensemble's Bloch vector. Atomic states with a moderate degree of entanglement yield the maximal clock stability, resulting in an improvement that scales as N1/6N^{1/6} compared to the atomic shot noise level.Comment: 4 pages, 2 figures, revtex

    Interactions of Poly(amidoamine) Dendrimers with Human Serum Albumin: Binding Constants and Mechanisms

    Get PDF
    The interactions of nanomaterials with plasma proteins have a significant impact on their in vivo transport and fate in biological fluids. This article discusses the binding of human serum albumin (HSA) to poly(amidoamine) [PAMAM] dendrimers. We use protein-coated silica particles to measure the HSA binding constants (K_b) of a homologous series of 19 PAMAM dendrimers in aqueous solutions at physiological pH (7.4) as a function of dendrimer generation, terminal group, and core chemistry. To gain insight into the mechanisms of HSA binding to PAMAM dendrimers, we combined ^1H NMR, saturation transfer difference (STD) NMR, and NMR diffusion ordered spectroscopy (DOSY) of dendrimer−HSA complexes with atomistic molecular dynamics (MD) simulations of dendrimer conformation in aqueous solutions. The binding measurements show that the HSA binding constants (K_b) of PAMAM dendrimers depend on dendrimer size and terminal group chemistry. The NMR ^1H and DOSY experiments indicate that the interactions between HSA and PAMAM dendrimers are relatively weak. The ^1H NMR STD experiments and MD simulations suggest that the inner shell protons of the dendrimers groups interact more strongly with HSA proteins. These interactions, which are consistently observed for different dendrimer generations (G0-NH_2vs G4-NH_2) and terminal groups (G4-NH_2vs G4-OH with amidoethanol groups), suggest that PAMAM dendrimers adopt backfolded configurations as they form weak complexes with HSA proteins in aqueous solutions at physiological pH (7.4)

    Quantum corrections to the phase diagram of heavy-fermion superconductors

    Full text link
    The competition between magnetism and Kondo effect is the main effect determining the phase diagram of heavy fermion systems. It gives rise to a quantum critical point which governs the low temperature properties of these materials. However, experimental results made it clear that a fundamental ingredient is missing in this description, namely superconductivity. In this paper we make a step forward in the direction of incorporating superconductivity and study the mutual effects of this phase and antiferromagnetism in the phase diagram of heavy fermion metals. Our approach is based on a Ginzburg-Landau theory describing superconductivity and antiferromagnetism in a metal with quantum corrections taken into account through an effective potential. The proximity of an antiferromagnetic instability extends the region of superconductivity in the phase diagram and drives this transition into a first order one. On the other hand superconducting quantum fluctuations near a metallic antiferromagnetic quantum critical point gives rise to a first order transition from a low moment to a high moment state in the antiferromagnet. Antiferromagnetism and superconductivity may both collapse at a quantum bicritical point whose properties we calculate.Comment: 10 pages, 6 figure

    Ground-state energy and depletions for a dilute binary Bose gas

    Full text link
    When calculating the ground-state energy of a weakly interacting Bose gas with the help of the customary contact pseudopotential, one meets an artifical ultraviolet divergence which is caused by the incorrect treatment of the true interparticle interactions at small distances. We argue that this problem can be avoided by retaining the actual, momentum-dependent interaction matrix elements, and use this insight for computing both the ground-state energy and the depletions of a binary Bose gas mixture. Even when considering the experimentally relevant case of equal masses of both species, the resulting expressions are quite involved, and no straightforward generalizations of the known single-species formulas. On the other hand, we demonstrate in detail how these latter formulas are recovered from our two-species results in the limit of vanishing interspecies interaction.Comment: 11 pages, Phys. Rev. A in pres
    corecore