21,755 research outputs found
Optimal multiqubit operations for Josephson charge qubits
We introduce a method for finding the required control parameters for a
quantum computer that yields the desired quantum algorithm without invoking
elementary gates. We concentrate on the Josephson charge-qubit model, but the
scenario is readily extended to other physical realizations. Our strategy is to
numerically find any desired double- or triple-qubit gate. The motivation is
the need to significantly accelerate quantum algorithms in order to fight
decoherence.Comment: 4 pages, 5 figure
Classical Concepts in Quantum Programming
The rapid progress of computer technology has been accompanied by a
corresponding evolution of software development, from hardwired components and
binary machine code to high level programming languages, which allowed to
master the increasing hardware complexity and fully exploit its potential.
This paper investigates, how classical concepts like hardware abstraction,
hierarchical programs, data types, memory management, flow of control and
structured programming can be used in quantum computing. The experimental
language QCL will be introduced as an example, how elements like irreversible
functions, local variables and conditional branching, which have no direct
quantum counterparts, can be implemented, and how non-classical features like
the reversibility of unitary transformation or the non-observability of quantum
states can be accounted for within the framework of a procedural programming
language.Comment: 11 pages, 4 figures, software available from
http://tph.tuwien.ac.at/~oemer/qcl.html, submitted for QS2002 proceeding
Analysis of a convenient information bound for general quantum channels
Open questions from Sarovar and Milburn (2006 J.Phys. A: Math. Gen. 39 8487)
are answered. Sarovar and Milburn derived a convenient upper bound for the
Fisher information of a one-parameter quantum channel. They showed that for
quasi-classical models their bound is achievable and they gave a necessary and
sufficient condition for positive operator-valued measures (POVMs) attaining
this bound. They asked (i) whether their bound is attainable more generally,
(ii) whether explicit expressions for optimal POVMs can be derived from the
attainability condition. We show that the symmetric logarithmic derivative
(SLD) quantum information is less than or equal to the SM bound, i.e.\
and we find conditions for equality. As
the Fisher information is less than or equal to the SLD quantum information,
i.e. , we can deduce when equality holds in
. Equality does not hold for all
channels. As a consequence, the attainability condition cannot be used to test
for optimal POVMs for all channels. These results are extended to
multi-parameter channels.Comment: 16 pages. Published version. Some of the lemmas have been corrected.
New resuts have been added. Proofs are more rigorou
Generation of decoherence-free displaced squeezed states of radiation fields and a squeezed reservoir for atoms in cavity QED
We present a way to engineer an effective anti-Jaynes-Cumming and a
Jaynes-Cumming interaction between an atomic system and a single cavity mode
and show how to employ it in reservoir engineering processes. To construct the
effective Hamiltonian, we analyse considered the interaction of an atomic
system in a \{Lambda} configuration, driven by classical fields, with a single
cavity mode. With this interaction, we firstly show how to generate a
decoherence-free displaced squeezed state for the cavity field. In our scheme,
an atomic beam works as a reservoir for the radiation field trapped inside the
cavity, as employed recently by S. Pielawa et al. [Phys. Rev. Lett. 98, 240401
(2007)] to generate an Einstein-Podolsky-Rosen entangled radiation state in
high-Q resonators. In our scheme, all the atoms have to be prepared in the
ground state and, as in the cited article, neither atomic detection nor precise
interaction times between the atoms and the cavity mode are required. From this
same interaction, we can also generate an ideal squeezed reservoir for atomic
systems. For this purpose we have to assume, besides the engineered atom-field
interaction, a strong decay of the cavity field (i.e., the cavity decay must be
much stronger than the effective atom-field coupling). With this scheme, some
interesting effects in the dynamics of an atom in a squeezed reservoir could be
tested
Two-mode single-atom laser as a source of entangled light
A two-mode single-atom laser is considered, with the aim of generating
entanglement in macroscopic light. Two transitions in the four-level gain
medium atom independently interact with the two cavity modes, while two other
transitions are driven by control laser fields. Atomic relaxation as well as
cavity losses are taken into account. We show that this system is a source of
macroscopic entangled light over a wide range of control parameters and initial
states of the cavity field
A measure of majorisation emerging from single-shot statistical mechanics
The use of the von Neumann entropy in formulating the laws of thermodynamics
has recently been challenged. It is associated with the average work whereas
the work guaranteed to be extracted in any single run of an experiment is the
more interesting quantity in general. We show that an expression that
quantifies majorisation determines the optimal guaranteed work. We argue it
should therefore be the central quantity of statistical mechanics, rather than
the von Neumann entropy. In the limit of many identical and independent
subsystems (asymptotic i.i.d) the von Neumann entropy expressions are recovered
but in the non-equilbrium regime the optimal guaranteed work can be radically
different to the optimal average. Moreover our measure of majorisation governs
which evolutions can be realized via thermal interactions, whereas the
nondecrease of the von Neumann entropy is not sufficiently restrictive. Our
results are inspired by single-shot information theory.Comment: 54 pages (15+39), 9 figures. Changed title / changed presentation,
same main results / added minor result on pure bipartite state entanglement
(appendix G) / near to published versio
Rapid state purification protocols for a Cooper pair box
We propose techniques for implementing two different rapid state purification
schemes, within the constraints present in a superconducting charge qubit
system. Both schemes use a continuous measurement of charge (z) measurements,
and seek to minimize the time required to purify the conditional state. Our
methods are designed to make the purification process relatively insensitive to
rotations about the x-axis, due to the Josephson tunnelling Hamiltonian. The
first proposed method, based on the scheme of Jacobs [Phys. Rev. A 67,
030301(R) (2003)] uses the measurement results to control bias (z) pulses so as
to rotate the Bloch vector onto the x-axis of the Bloch sphere. The second
proposed method, based on the scheme of Wiseman and Ralph [New J. Phys. 8, 90
(2006)] uses a simple feedback protocol which tightly rotates the Bloch vector
about an axis almost parallel with the measurement axis. We compare the
performance of these and other techniques by a number of different measures.Comment: 14 pages, 14 figures. v2: Revised version after referee comments.
Accepted for publication by Physical Review
Qubit-portraits of qudit states and quantum correlations
The machinery of qubit-portraits of qudit states, recently presented, is
consider here in more details in order to characterize the presence of quantum
correlations in bipartite qudit states. In the tomographic representation of
quantum mechanics, Bell-like inequalities are interpreted as peculiar
properties of a family of classical joint probability distributions which
describe the quantum state of two qudits. By means of the qubit-portraits
machinery a semigroup of stochastic matrices can be associated to a given
quantum state. The violation of the CHSH inequalities is discussed in this
framework with some examples, we found that quantum correlations in qutrit
isotropic states can be detected by the suggested method while it cannot in the
case of qutrit Werner states.Comment: 12 pages, 4 figure
- …