14,823 research outputs found
Our Commitment to Economic Development
When I arrived at UNLV, I gave considerable thought to how the university could better embrace the identity of our city. What I didnât quite anticipate at the time was just how much the city wanted to embrace UNLV
Red Crossbill Invasion of Northwestern Arkansas during 2012-2013
An irruption of Red Crossbills (Loxia curvirostra) occurred in primarily northwestern Arkansas starting in November of 2012 and lasting to the end of May of 2013. Based on recordings of call notes, most birds around Fayetteville were Type 2, the large-billed ponderosa pine crossbill, associated with a variety of conifer species. Birds recorded in Carroll County were Type 3, the small-billed western hemlock crossbill, and they were associated with small cones on shortleaf pine (Pinus echinata). One recording was obtained in Fayetteville of Type 5, the lodgepole pine crossbill, only the third recording east of the Great Plains. Crossbills at the Fayetteville Country Club were observed eating algae (Cladophora sp.) during the months of December and January, a behavior rarely reported for passerines. During March, crossbills appeared at sunflower bird feeders, which is a relatively recent phenomenon associated with low conifer seed abundance. The first two Arkansas specimens of crossbills (probably Type 3) were obtained from birds that struck windows near feeders. This is only the third recorded irruption of crossbills in Arkansas in the last 43 years, suggesting that crossbills rarely travel this far south in search of cone crops
A cost function for similarity-based hierarchical clustering
The development of algorithms for hierarchical clustering has been hampered
by a shortage of precise objective functions. To help address this situation,
we introduce a simple cost function on hierarchies over a set of points, given
pairwise similarities between those points. We show that this criterion behaves
sensibly in canonical instances and that it admits a top-down construction
procedure with a provably good approximation ratio
Telluric correction in the near-infrared: Standard star or synthetic transmission?
Context. The atmospheric absorption of the Earth is an important limiting
factor for ground-based spectroscopic observations and the near-infrared and
infrared regions are the most affected. Several software packages that produce
a synthetic atmospheric transmission spectrum have been developed to correct
for the telluric absorption; these are Molecfit, TelFit, and TAPAS. Aims. Our
goal is to compare the correction achieved using these three telluric
correction packages and the division by a telluric standard star. We want to
evaluate the best method to correct near-infrared high-resolution spectra as
well as the limitations of each software package and methodology. Methods. We
applied the telluric correction methods to CRIRES archival data taken in the J
and K bands. We explored how the achieved correction level varies depending on
the atmospheric T-P profile used in the modelling, the depth of the atmospheric
lines, and the molecules creating the absorption. Results. We found that the
Molecfit and TelFit corrections lead to smaller residuals for the water lines.
The standard star method corrects best the oxygen lines. The Molecfit package
and the standard star method corrections result in global offsets always below
0.5% for all lines; the offset is similar with TelFit and TAPAS for the H2O
lines and around 1% for the O2 lines. All methods and software packages result
in a scatter between 3% and 7% inside the telluric lines. The use of a tailored
atmospheric profile for the observatory leads to a scatter two times smaller,
and the correction level improves with lower values of precipitable water
vapour. Conclusions. The synthetic transmission methods lead to an improved
correction compared to the standard star method for the water lines in the J
band with no loss of telescope time, but the oxygen lines were better corrected
by the standard star method.Comment: 18 pages, 13 figures, Accepted to A&
Looking for Distributed Star Formation in L1630: A Near-infrared (J, H, K) Survey
We have carried out a simultaneous, multi-band (J, H, K) survey over an area
of 1320 arcmin^2 in the L1630 region, concentrating on the region away from the
dense molecular cores and with modest visual extinctions (\leq 10 mag).
Previous studies found that star formation in L1630 occurs mainly in four
localized clusters, which in turn are associated with the four most massive
molecular cores (Lada et al. 1991; Lada 1992). The goal of this study is to
look for a distributed population of pre-main-sequence stars in the outlying
areas outside the known star-forming cores. More than 60% of the
pre-main-sequence stars in the active star forming regions of NGC 2024 and NGC
2023 show a near-infrared excess in the color-color diagram. In the outlying
areas of L1630, excluding the known star forming regions, we found that among
510 infrared sources with the near-infrared colors ((J-H) and (H-K)) determined
and photometric uncertainty at K better than 0.10 mag, the fraction of the
sources with a near-infrared excess is 3%--8%; the surface density of the
sources with a near-infrared excess is less than half of that found in the
distributed population in L1641, and 1/20 of that in the young cluster NGC
2023. This extremely low fraction and low surface density of sources with a
near-infrared excess strongly indicates that recent star formation activity has
been very low in the outlying region of L1630. The sources without a
near-infrared excess could be either background/foreground field stars, or
associated with the cloud, but formed a long time ago (more than 2 Myrs). Our
results are consistent with McKee's model of photoionization-regulated star
formation.Comment: 30 pages, 10 figures To appear in ApJ Oct 1997, Vol 48
Emergency escape system uses self-braking mechanism on fixed cable
Slide-wire system with a twist level slide device incorporates automatic descent and braking for the safe and rapid evacuation of personnel from tall structures. This device is used on any tall structure that might require emergency evacuation. It is also used to transfer materials and equipment
The Galaxy Angular Correlation Functions and Power Spectrum from the Two Micron All Sky Survey
We calculate the angular correlation function of galaxies in the Two Micron
All Sky Survey. We minimize the possible contamination by stars, dust, seeing
and sky brightness by studying their cross correlation with galaxy density, and
limiting the galaxy sample accordingly. We measure the correlation function at
scales between 1-18 arcdegs using a half million galaxies. We find a best fit
power law to the correlation function has a slope of 0.76 and an amplitude of
0.11. However, there are statistically significant oscillations around this
power law. The largest oscillation occurs at about 0.8 degrees, corresponding
to 2.8 h^{-1} Mpc at the median redshift of our survey, as expected in halo
occupation distribution descriptions of galaxy clustering.
We invert the angular correlation function using Singular Value Decomposition
to measure the three-dimensional power spectrum and find that it too is in good
agreement with previous measurements. A dip seen in the power spectrum at small
wavenumber k is statistically consistent with CDM-type power spectra. A fit of
CDM-type power spectra to k < 0.2 h Mpc^{-1} give constraints of
\Gamma_{eff}=0.116 and \sigma_8=0.96. This suggest a K_s-band linear bias of
1.1+/-0.2. This \Gamma_{eff} is different from the WMAP CMB derived value. On
small scales the power-law shape of our power spectrum is shallower than that
derived for the SDSS. These facts together imply a biasing of these different
galaxies that might be nonlinear, that might be either waveband or luminosity
dependent, and that might have a nonlocal origin.Comment: 14 pages, 20 figures, to be published in ApJ January 20th, revision
included two new figures, version with high resolution figures can be found
here http::ww
- âŠ