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Abstract 

Chronic exposure to a stressor elicits adaptations enhancing the tolerance to that stressor. 

These adaptive responses might also improve tolerance under less-stressful conditions. For 

example, historically there has been much interest in the adaptive responses to high-altitude, 

or hypoxia, and their ergogenic potential under sea-level, or normoxic, conditions. In 

contrast, the influence of the adaptive responses to heat on exercise under cooler conditions 

has received relatively little interest. Heat acclimation/acclimatization (HA) is known to 

increase work capacity in hot environments. Yet, aerobic exercise performance can 

progressively deteriorate as ambient temperature increases beyond ~10°C, indicating a 

thermal limitation even under relatively cool conditions. The improved thermoregulatory 

capability induced by HA might attenuate this thermal decrement in a manner similar to that 

seen when exposed to hotter temperatures. Moreover, the suite of adaptations elicited by HA 

has the potential to increase maximal oxygen uptake (VO2max), lactate threshold (LT) and 

economy, and thus may be ergogenic even under conditions where performance is not 

thermally limited. Indeed,  evidence is now emerging to support an ergogenic effect of HA, 

but the number of studies is limited and in some instances lack appropriate control, are 

confounded by methodological limitations, or do not address the mechanisms of action. 

Nevertheless, these tantalising insights into the ergogenic potential of heat will likely 

generate considerable interest in this new ‘hot topic’. Future research will need to employ 

well designed studies to clarify the exercise conditions under which ergogenic effects of HA 

are apparent, to elucidate the precise mechanisms, and to optimise HA strategies for 

performance.  
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Key Points 

 Heat acclimation/acclimatization (HA) is documented to improve aerobic exercise 

performance in hot environments. 

 HA may also have the potential to increase performance under cooler conditions were 

there is a smaller, yet still potentially limiting, thermal burden. 

 The adaptations induced by HA also have the potential to increase the maximal rate of 

oxygen uptake (VO2max), lactate threshold (LT) and economy, and thus may be 

ergogenic through non-thermal mechanisms. 
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1 Introduction 

A perturbation to the stability of the internal environment when exposed to a stressor evokes 

effector responses to counter, or regulate, that perturbation. When repeated, these 

perturbations elicit adaptations enabling an individual to better control, or accommodate, the 

impact of a given stimulus on the body’s internal environment, thereby enhancing the 

tolerance to that stimulus. When this process occurs as a consequence of stressors in the 

natural environment, and the ability to exercise in that environment is improved, it is termed 

acclimatization [1]. If these adaptations are induced through the use of an environmental 

chamber the term acclimation is used [1]; if all factors are identical in both environments then 

similar adaptation will result. In some circumstances the array of adaptive responses to a 

given stressor may also improve the tolerance under different [2, 3], or less stressful 

conditions [4, 5]. For instance, considerable attention has been devoted to the adaptive 

responses to high-altitude, or hypoxia, and the ergogenic potential for exercise performance 

under sea-level, or normoxic, conditions [6]. In contrast, the influence of the adaptive 

responses to heat on exercise performance under cooler conditions has received little interest. 

Although warm-weather training has long been popular with athletes, anecdotally it appears 

this was for comfort, convenience and logistical reasons rather than a direct effect of 

adaptation to heat per se. 

 

2 Adaptations to heat 

Heat acclimation/acclimatization (HA) is induced through repeated exposures to heat that are 

sufficient to elevate core temperature (TC) and skin temperature (TSk) and promote sweating 

[7-14]. The first adaptations are complete within 3-6 days and have recently been reviewed 

[15]. Briefly, the initial adaptations are characterised by plasma volume expansion [14], 

underpinned by increased aldosterone secretion and sensitivity and intra-vascular protein 

influx [12, 14]. These combined effects increase sodium and chloride reabsorption in sweat 

ducts and renal tubules, lowering sweat electrolyte content and increasing the osmotic/oncotic 

retention of water; red cell volume may also become increased with repeated heat exposure 

[16, 17]. The resultant hypervolemia can increase stroke volume [12], lower heart rate at a 

given work-rate [7-11, 13], and increase maximal cardiac output [5], which may be aided by 

increases in myocardial efficiency [18] and ventricular compliance [19]. Sudomotor 

adaptions are evident from the second day of HA, but take 7-14 days for full development, 

and are characterised by a lowering of the sweating threshold [20] and greater sweating 

sensitivity [12, 20], leading to increased sweating [7-12]. The threshold for cutaneous 

vasodilatation is also reduced [20]. Together, these effects lower TSk [7-10, 13] and increase 

skin blood vessel compliance, which reduces cutaneous blood-flow for a given level of 

exercise [20] and helps to maintain perfusion pressure and improve cardiovascular stability. 

Metabolic adaptations also occur which reduce metabolic heat by increasing efficiency [11, 

21] and decreasing muscle glycogen utilisation [22], as well as muscle and blood lactate 

accumulation [22-24]. Evidence is also emerging for an anabolic effect of heat [25-27]. These 

physiological changes likely underpin the reduction in perceived exertion which manifests 

following HA [13]. Overall, these adaptations result in improved defence of body 

temperature, characterised by a more favourable TC:TSk gradient [8], reduced TC [7-14], and a 

reduction in relative exercise intensity at a given work rate in the heat [7-11, 13], as well as 

an increased maximal rate of oxygen uptake (VO2max) [5, 11, 17, 28], lactate threshold (LT) 

[5], economy [11, 21], and increased work capacity under these conditions [5, 7, 12, 28, 29]. 

The similarity between the adaptive responses to heat and those occurring with exercise has 

long been recognised and endurance trained participants often demonstrate physiological 

adaptations associated with HA [30]. Nevertheless, there has been a growing recognition of 
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the ergogenic potential of the adaptive response to heat under cooler conditions [5, 31-34] 

(Table 1). 



 

6 
 

Table 1: Summary of thermoregulatory adaptations and the associated thermal and physiological effects 

following heat acclimation/acclimatization, as well as their ergogenic potential for aerobic exercise under cool 

or temperate conditions. ↑ = increased; ↓ decreased;  = likely ergogenic potential; / = ergogenic potential 

unclear.

TC = Core temperature; TSk = skin temperature  

Physiological adaptations following heat 

acclimation/acclimatization 

Effect  Ergogenic potential under 

cool/temperate conditions 

Thermoregulatory effects   

     Sweating (rate, sensitivity, threshold) ↑ / 

     Sweat electrolyte content ↓ / 

     Total body water  ↑  / 

     Plasma volume ↑ / 

     Red cell volume ↑  

     Total blood volume ↑ / 

     Skin blood-flow ↓  

 

Thermal effects 
  

     Resting TC ↓   

     Sub-maximal exercise TC ↓  

     TSk ↓  

     TC:TSk gradient ↑  

 

Physiological effects 
  

     Heart rate at given sub-maximal work rate ↓  

     Myocardial efficiency ↑  

     Ventricular compliance ↑  

     Maximal cardiac output ↑  

     Maximal O2 uptake ↑  

     O2 uptake at sub-maximal work rate (economy) ↓  

     Carbohydrate metabolism ↓  

     Lactate threshold ↑  

     Anabolic effects  ↑  

     Strength  ↑   
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3 Ergogenic potential of HA 

3.1 Thermal effects 

The effect of ambient temperature on aerobic exercise performance is a continuum; the 

fastest performances are often achieved at a temperature of ~10°C and performance slows 

exponentially as temperature increases beyond this optimum [35-37], although this will be 

influenced by other parameters influencing heat exchange, including the mode of exercise 

and climatic factors such as wind, humidity and radiation. In hot environments, diminished 

aerobic exercise performance likely results from the combined effects of increased 

temperature on the central nervous system [38, 39], peripheral nervous system [39], and 

possibly skeletal muscle [40], as well as augmented cardio-vascular strain caused by the need 

to maintain blood pressure in the face of competition for blood-flow between the heat loss 

requirements of the skin and the metabolic demands of the working muscles [41]. However, 

the relevance of these mechanisms under cooler conditions is less clear. It has been suggested 

that the high heat production of athletes means that they can exceed their ‘prescriptive zone’ 

[42], i.e. the range of ambient temperatures where the TC is dependent on metabolic rate and 

independent of the environmental temperature, even under cool conditions [37]. In a group of 

13 competitive distance runners the mean (range) peak rectal temperature was 39.84 (39.39-

40.28)°C during 8-km running time-trials under cool conditions (wet bulb globe temperature 

[WBGT] ~13°C) [43], although the deleterious effect of a high TC without a co-existent high 

TSk has been questioned [44]. Nevertheless, TSk increases in proportion to ambient 

temperature and humidity [45]. This will augment skin blood-flow requirements [46], cardio-

vascular strain [44], and by extension, relative exercise intensity. It is tempting to speculate 

that the improved thermoregulatory capability induced by HA might attenuate this thermal 

decrement in a manner similar to that seen when exposed to hotter temperatures. Indeed, HA 

has been shown to lower TSk and increase TC:TSk gradient during exercise in temperate 

(23°C) [11] and cool conditions (13°C) [5], with a reduction in heart rate, sweating rate, 

oxygen consumption and rectal temperature also reported in temperate conditions [11]. 

However, given that the deleterious impact of ambient temperature decreases exponentially, 

any ergogenic benefits of HA related to thermal tolerance might be anticipated to decline in 

parallel to the reduction in the thermal-burden of the environment. 

    

3.2 Non-thermal effects 

Some of the adaptive responses to heat may also have ergogenic potential through non-

thermal mechanisms. For example, maximal cardiac output is increased in cool conditions 

following HA [5], possibly as a consequence of plasma volume expansion and a Frank-

Starling effect on stroke volume [47]. This effect may precipitate the increase in VO2max 

reported in cool-temperate conditions following HA [5, 11, 17, 28], although the influence of 

plasma volume expansion on VO2max is controversial in trained populations and depends on 

the balance between increased cardiac output and the haemodilution effect on O2 carrying 

capacity [47, 48]. There is some evidence to suggest that red-cell mass may also increase 

following exposure to heat [16, 17], whereas improved myocardial efficiency [18] and an 

increased end-diastolic volume as a consequence of increased ventricular compliance [19] 

could also account for the increase in VO2max. An increase in VO2max will decrease the 

relative exercise intensity at any given work-rate and this effect will be augmented by the 

improved exercise economy demonstrated in cool conditions following HA [21]. The 

mechanism underpinning the improved economy is unclear, although a transition from fast 

myosin to the more efficient slow myosin form has been demonstrated following HA in rat 

cardiac muscle [49]. Increased strength has also been reported following HA with exercise 

[50], and with local muscle heating [25], which might occur via heat-induced activation of 

the anabolic mammalian target of rapamycin (mTOR) pathway [26]. Increased strength 



 

8 
 

would reduce the relative force of a given muscle contraction. Although speculative, each of 

these effects could contribute to the increased power at the LT during exercise in a cool 

environment that has been reported following HA [5], but this could also be attributed to 

reduced carbohydrate metabolism demonstrated during exercise in a cool environment 

following HA [24], or dilution effects due to plasma volume expansion. Equally, altered 

lactate kinetics could be a result of improved O2 supply as a consequence of the increase in 

VO2max, or better preservation of splanchnic lactate removal as a consequence of increased 

cardiac output, as suggested by Lorenzo et al. [5]. Regardless of the mechanisms, endurance 

sports performance is underpinned by the interaction of VO2max, the percentage of VO2max 

that can be sustained for a given duration which is closely linked to the LT, and economy 

[51]; the observation that each of these may be positively influenced by adaptation to heat is 

indicative of a powerful ergogenic potential. Nevertheless, the ergolytic potential of HA 

should also be acknowledged. The mass penalty associated with hypervolemia could offset 

any physiological benefits, particularly in weight-bearing sports, although simple calculations 

based on a 70 kg male suggest that this effect would be no greater than ~0.3 kg, and likely 

less given that plasma volume expansion may occur in the absence of body mass change, 

possibly at the expense of the interstitial fluid volume [12]. Likewise, increased sweating 

rates will accelerate dehydration, although this is unlikely to be a problem if fluids are freely 

available because humans may be able to maintain adequate hydration with ad-libitum fluid 

consumption [52] and HA also improves thirst sensitivity [53].  

 

4 State of the literature 
To date, a limited number of studies have examined the ergogenic potential of HA (Table 2). 

Sawka et al. [28] were first to show an ergogenic effect of HA, in a group of soldiers 

undertaking nine, consecutive, daily 90-minute heat exposures (49°C, 20% relative humidity 

[RH]) with light exercise. Reductions in TC and heart rate were evident in the final 

acclimation session, indicating HA, and an incremental cycling exercise test showed that 

mean peak power output and VO2max were increased under the same ambient conditions, but 

increases in mean peak power (4%) and VO2max (4%) were also evident under cooler 

conditions (21°C, 30% RH). However, this study did not include a control group and whilst 

the work-rate used during the HA programme was lighter than that typically associated with a 

training effect in fit participants [54], the potential for training effects cannot be excluded, 

although others have also demonstrated an effect of HA on VO2max, with [5], or without [11, 

17], a concomitant ergogenic effect. 

  

Unfortunately, the absence of an appropriate control group is common feature of 5 of the 7 

studies reporting an ergogenic effect of heat exposure on exercise under cooler conditions 

[28, 31, 33, 34, 55]. For instance, a 7-44% mean increase in run distance during a yo-yo 

shuttle running test conducted at an ambient temperature of ~22-23°C has been reported 

following a 7- [31] or 14-day [33, 34] training camp, during which athletes were frequently 

exposed to hot conditions (33-40°C, 27-50% RH) with, and without, exercise. In two of these 

studies some of the participants were also exposed to hypoxic conditions whilst sleeping [33, 

34], although the responses were largely similar irrespective of hypoxic exposure. Similarly, 

a 10% mean improvement in 400-m swim time was reported after undertaking an 8-day 

warm-weather swim training camp (air temperature 30°C, 80% RH) during which the athletes 

swam a mean ± SD distance of  62.3 ± 3.4 km (water temperature 30°C) [55]. However, this 

ergogenic effect was only evident 40-days after the training camp and not 10-days after the 

training camp, whereas another study [33] reported an ergogenic effect immediately after the 

training camp, which persisted 28-days after the training camp. These sustained effects are 

interesting because they are not consistent with the typical time-course for the decay in 
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physiological adaptation reported following HA [1, 15]. Indeed, whilst some of these studies 

demonstrated physiological effects consistent with some form of adaptation to heat, such as 

plasma volume expansion [31, 33, 34], reduced heart rate and reduced sweat-sodium 

concentration [33, 34], and lowering of TSk [34] during exercise in the heat, TC was either 

unchanged [34], or not reported [31, 33, 55]. Moreover, the ergogenic effect was either not 

correlated, or weakly correlated, with the markers of HA [34]. Taken together, the absence of 

an appropriate control group, the limited evidence for HA, the weak relationship between HA 

markers and the change in performance, and prolonged ergogenic effects at odds with the 

reported decay in HA, means that the extent to which the ergogenic effects in these studies is 

underpinned by HA, training effects, or the interaction of HA and training, is not clear. 

 

Two studies investigating the effect of heat exposure on aerobic exercise performance in 

cooler conditions have employed randomised controlled trials experimental designs with a 2- 

[56] or 3-week [16] washout period, but given the sustained ergogenic effects reported in 

some studies [33, 55], this washout period may have been insufficient. Following a 7-day HA 

programme (37°C, 50% RH) consisting of a combination of fixed work-rate (days 1 and 7) 

and self-paced exercise (days 2-6) for 90 min·day
-1

, 
 
Morrison et al. [56] demonstrated a 

0.4% mean improvement (adjusted for learning effects) in 40-km cycling time-trial 

performance in cool conditions (20°C, 50% RH), with a 35/54/11% chance that the effect 

was beneficial/trivial/harmful. However, the thermal stimulus induced by the HA programme 

in this study may have been insufficient, with the self-paced exercise resulting in similar 

mean TC in the HA group (TC = 38.1°C) and the control group (TC = 38.0°C) exercising in 

cooler conditions. In both instances the TC was lower than that associated with optimal HA 

[57] and although there was some evidence of modest HA, as shown by a small reduction in 

haematocrit, heart rate, sweat rate and TC from day 1 to 7, the correlation between these 

effects and performance changes was weak. Scoon et al. [16] employed a 3-week 

intervention in which trained distance runners undertook ~12, ~30-minute, saunas following 

their normal training, and a control condition in which participants undertook their normal 

training without sauna. Whilst HA was not assessed per se, and optimal HA might require 

exercise during exposure to heat [58], significant increases in plasma, red cell and total blood 

volume were evident following the sauna intervention and mean run time to exhaustion at 

~5,000-m running pace was increased by 32%. Although the ambient conditions of the run to 

exhaustion were not stated it is highly likely that they were substantially lower than the sauna 

conditions and the individual changes in performance were strongly correlated with the 

plasma (r = 0.96) and total blood volume (r = 0.94) changes. However, caution is warranted 

when interpreting the magnitude of improvement from tests to exhaustion given that that the 

equivalent effect on performance in a time-trial of a similar duration will be less [59].   

 

In each of the aforementioned studies [16, 28, 31, 33, 34, 55] the ambient conditions were 

likely above those associated with optimal performance during sustained exercise [35-37], 

indicating a potentially limiting thermal burden in many of these studies, even under the 

cooler conditions. Whilst this does not impact upon the practical benefits of HA for exercise 

under these conditions, it may obscure the mechanisms underpinning the ergogenic effects of 

HA. To date, only one study demonstrating an ergogenic effect of HA has done so under 

ambient conditions associated with optimal aerobic performance. Lorenzo et al. [5] 

demonstrated that the adaptive responses elicited by a 10 day HA programme consisting of 

90-minutes exercise per day (50% VO2max) in a hyperthermic environment (40°C, 30% RH) 

increased the amount of work done in a 60-minute cycling trial by a mean of 6% under cool 

(13°C, 30% RH) conditions in well-trained cyclists, but given that during cycling exercise in 

the field the power output is related to velocity with an exponent of between 2.6 and 3 [60, 
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61], the true performance effect in an outdoor time-trial would be somewhat lower. 

Nevertheless, the HA was effective as evidenced by a significant plasma volume expansion, a 

reduction in exercise heart rate and TC, and improved exercise performance under the hot 

conditions with the improvement in cool performance accompanied by increases in mean 

maximal cardiac output (9.1%), VO2max (5%), and power at LT (5%) in these conditions. 

Moreover, a control group undertaking the same exercise protocol under cooler conditions 

did not show these effects, indicating that the responses were probably caused by adaptation 

to heat, or an interaction between heat and exercise, rather than exercise, although the 

influence of heat on relative exercise intensity means that the potential for an augmented 

training effect in the experimental group remains possible.  
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Table 2: Human studies reporting effects of repeated heat exposure on exercise performance and performance related measures under cooler conditions. Ambient conditions 

are dry bulb temperature and humidity (if reported). Cooler exercise performance refers to tests completed within five days of heat exposure period unless otherwise stated. 

Heat exposures are laboratory based unless otherwise stated e.g. training camp, sauna. All effects are reported as group mean values. 

aafter adjustment for learning effects; bprobability of practical significance of improvement determined as 35/54/11% beneficial/trivial/harmful; cstudy included further experimental groups, but no control group; d 

probability of practical significance of improvement determined as ‘almost certain (>99%) improvement’; eno significant changes seen in control group; f11 participants also underwent hypoxic exposure (sleeping and 

interval training), no between-groups differences evident between normoxic and hypoxic exposed participants; gincreased run distance and reduced sub-maximal exercise heart rate determined as ‘almost certain (>99%) 

improvement’ h includes some players who slept in hypoxic conditions. LT = lactate threshold; VO2max = maximal oxygen uptake; RCT = Randomized crossover trial; RH = relative humidity; RPE = rating of perceived 
exertion.  

Study Participants Heat exposure Control group Cooler exercise  
performance 

Effect Statistical 
significance 

Sawka et al. 

[28] 

13 soldiers 9 consecutive days, 120 min·day-1 (49 °C, 20% 

RH) with exercise (40-50% VO2max) 

None Ramp exercise test 

(21°C, 30% RH) 

4% increase in VO2max  

4% increase in ramp test 

peak power output (both 
relative to pre heat exposure) 

p < 0.01 

p < 0.05 

Morrison et al. 

[56] 

9 highly trained 

cyclists  

7 consecutive days, 90 min·day-1 (37 °C, 50% 

RH) with exercise (day 1 and 7 at 45% maximum 
power from VO2max test, days 2-6 self-paced) 

RCT with two week washout: 7 days, 90 

min·day-1 (20°C, 50%  RH)  at matched 
absolute work rate (day 1 and 7), or RPE 

(day 2-6) 

40-km cycling time-trial 

(20°C, 50% RH)  
 

0.4% faster relative to 

controla  
 

Not 

reportedb 

Hue et al. [55] 6 trained 

regional/inter-
regional  

swimmers  

8 consecutive days (training camp, ~30 °C, 80% 

RH), 14 swim training sessions (30°C water) 

Nonec 400-m maximal swim test 

10 and 30 days post heat 
exposure (27.1°C water) 

10% faster 30 days post heat 

exposure relative to pre heat 
exposure  

p  < 0.03 

Scoon et al. 
[16] 

6 trained 
distance runners 

and triathletes  

3 wks usual running training with  mean ± SD 7 
± 2.1 saunas (~90°C,  ‘humid’, mean ± SD 

duration of 31 ± 5 min) immediately after 

training 

RCT with 3 wk washout: 3 wks usual 
training, no sauna 

Run time to exhaustion at 
current best 5 km speed 

(ambient temperature not 

reported) 

32% increase in run time to 
exhaustion relative to control  

Not 
reportedd 

Lorenzo et al. 
[5] 

12 highly 
trained 

endurance 

cyclists  

10 consecutive days, 100 min·day-1 (40°C, 30% 
RH ) with exercise (2 × 45 min at 50% VO2max, 

10 min recovery) plus usual training  

8 highly trained endurance cyclists (four also 
undertook experimental condition; washout 

not reported): 10 days; 100 min·day-1 (13°C 

and 30%  RH) with exercise (2 × 45 min at 
50% VO2max, 10 min recovery) plus usual 

training  

60 min cycling time-trial  
 

LT test 

 
VO2max test 

(13°C, 30% RH) 

6% increase in time-trial 
work 

5% increase in power output 

at LT 
5% increase in VO2max  (all 

relative to pre heat exposuree) 

p = 0.005 
 

p = 0.002 

 
p = 0.004 

Buchheit et al. 
[31] 

15 competitive 
soccer players  

7 consecutive days (training camp), 60-95 
min·day-1 (~40°C, 27%  RH.), with exercise (50-

83% heart rate max)  

None Yo-Yo intermittent 
recovery test level 1  

 (~22°C, 50% RH) 

 

7 % increase in run distance  
 

p = 0.009 
 

Buchheit et al. 

[33] 

17  professional 

Australian 

Rules Football 
players 

14 consecutive days (training camp), 10 football 

skills training sessions (~70 min mean duration, 

29-33°C, 37-50%  RH) plus 15 h total incidental 
heat exposure and ~13 h total, additional 

interval/strength training (~23°C, 55%  RH)f 

None Yo-Yo intermediate 

recovery level 2 test 

 (~22-23°C) 
 

44% increase in run distance,  

run distance also increased 4 

weeks post- intervention 

Not 

reportedg 

 

Racinais et al. 

[34] 

18  professional 

Australian 
Rules Football 

players 

14 consecutive days (training camp), 10 football 

skills training sessions (~90 min mean duration, 
29-33°C, 37-50%  RH) plus additional strength 

and conditioning sessions (~22°C)h 

None Yo-Yo intermediate 

recovery level 2 test 
(23°C) 

 

44% increase in run distance  

 

p < 0.001 
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5 Future Directions 

Although a growing number of studies have reported an ergogenic effect of HA, these 

findings have often been confounded by the absence of an appropriate control group [28, 31, 

33, 34, 55], sub-optimal HA programme [16, 56], absence of evidence for a clear HA [16, 31, 

33, 34, 55, 56], coincident hypoxic exposures [33, 34], and the use of exercise models where 

the ‘true’ performance effect is unclear [5, 16, 28, 31, 33, 34]. Thus, further studies are 

needed to clearly establish the ergogenic potential of HA during aerobic exercise, particularly 

in individuals who are highly endurance trained and may already demonstrate pronounced 

HA. Likewise, whilst there is evidence that HA can improve repeated sprint ability in the heat 

[29], the effect of HA on shorter durations of exercise and intermittent exercise under more 

temperate conditions has not been examined. However, as interest in the ergogenic effects of 

HA increases among athletes the potential for placebo effects will increase and researchers 

will need to be aware of this. Moreover, in the majority of studies, the ergogenic effect has 

been demonstrated under conditions that may still pose a limiting thermal burden [16, 28, 31, 

33, 34, 55, 56]. Although this does not detract from the practical significance of these 

findings, it may partially obscure the mechanisms underpinning the reported ergogenic 

effects; understanding the mechanisms by which adaptation to heat can enhance performance 

under cooler conditions is key for developing and optimising effective intervention strategies.  

 

Currently, it appears that haematological changes occurring with HA could be important [5, 

16, 17]. Recent evidence suggests that permissive dehydration during HA can lead to greater 

plasma volume expansion [62], although if the associated increases in cardiac output do not 

offset any haemodilution [48], or outweigh the potential for small changes in body mass, then 

performance could be impaired. There is a growing interest in the effects of combined 

stressors, such as heat and hypoxia [17, 63] and evidence is emerging to support such an 

ergogenic ‘cocktail’ [33], but given the multitude of physiological adaptations with single-

environmental stressors, clarifying and isolating precise mechanisms of any performance 

effects with combined-stressors will likely be challenging. Understanding the time course for 

the onset and decay of any ergogenic effects, and the frequency of stimulus required for 

maintenance is vital for developing strategies that can be used by athletes. It is generally 

agreed that HA is improved when heat exposure is combined with exercise [58], but given the 

ergogenic effects reported following sauna, it is not clear if this is also the case for the use of 

HA to optimise exercise performance under cooler conditions. This is important because the 

external work rate is typically reduced during exercise in the heat, which may compromise 

training stimulus in a manner similar to that seen at altitude and could lead to the 

development of a ‘live-hot train-cool’ strategy. To date, the controlled-hyperthermia 

technique, which better maintains the thermal stress and may optimise HA [15, 57], has not 

been employed in studies examining the ergogenic potential of heat. 

 

6 Conclusion 
The adaptive responses to heat improve aerobic exercise performance in hot conditions, but 

also have the potential to enhance exercise performance under cooler conditions. In some 

situations aerobic exercise performance can deteriorate as ambient temperature increases 

beyond ~10°C, indicating a thermal limitation even under relatively cool conditions. The 

improved thermoregulatory capability induced by HA might attenuate this thermal decrement 

in a manner similar to that seen when exposed to hotter temperatures. However, the suite of 

adaptations elicited by HA have the potential to increase VO2max, LT and economy, and thus 

may be ergogenic even under conditions where performance is not thermally limited. A small 

number of studies have reported an ergogenic effect of HA on exercise performance under 

cooler condition, although there remains a need for further studies in order to isolate and 
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confirm these effects. Similarly, more research is needed to clarify the mechanisms of any 

ergogenic effects of HA. This will, in turn pave the way for the development of strategies 

optimising the induction and maintenance of any ergogenic effects of HA. The ergogenic 

effect of HA is an area with immense promise and will likely prove to be a fruitful new ‘hot 

topic’. 
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