405 research outputs found
Undulation instabilities in the meniscus of smectic membranes
Using optical microscopy, phase shifting interferometry and atomic force
microscopy, we demonstrate the existence of undulated structures in the
meniscus of ferroelectric smectic-C* films. The meniscus is characterized by a
periodic undulation of the smectic-air interface, which manifests itself in a
striped pattern. The instability disappears in the untilted smectic-A phase.
The modulation amplitude and wavelength both depend on meniscus thickness. We
study the temperature evolution of the structure and propose a simple model
that accounts for the observed undulations.Comment: Submitted to PR
Drag on particles in a nematic suspension by a moving nematic-isotropic interface
We report the first clear demonstration of drag on colloidal particles by a moving nematic-isotropic
interface. The balance of forces explains our observation of periodic, strip-like structures that are produced by the movement of these particles
Azimuthal instability of the radial thermocapillary flow around a hot bead trapped at the water-air interface
We investigate the radial thermocapillary flow driven by a laser-heated
microbead in partial wetting at the water-air interface. Particular attention
is paid to the evolution of the convective flow patterns surrounding the hot
sphere as the latter is increasingly heated. The flow morphology is nearly
axisymmetric at low laser power P. Increasing P leads to symmetry breaking with
the onset of counter-rotating vortex pairs. The boundary condition at the
interface, close to no-slip in the low-P regime, turns about stress-free
between the vortex pairs in the high-P regime. These observations strongly
support the view that surface-active impurities are inevitably adsorbed on the
water surface where they form an elastic layer. The onset of vortex pairs is
the signature of a hydrodynamic instability in the layer response to the
centrifugal forced flow. Interestingly, our study paves the way for the design
of active colloids able to achieve high-speed self-propulsion via vortex pair
generation at a liquid interface
Nematic-Wetted Colloids in the Isotropic Phase: Pairwise Interaction, Biaxiality and Defects
We calculate the interaction between two spherical colloidal particles
embedded in the isotropic phase of a nematogenic liquid. The surface of the
particles induces wetting nematic coronas that mediate an elastic interaction.
In the weak wetting regime, we obtain exact results for the interaction energy
and the texture, showing that defects and biaxiality arise, although they are
not topologically required. We evidence rich behaviors, including the
possibility of reversible colloidal aggregation and dispersion. Complex
anisotropic self-assembled phases might be formed in dense suspensions.Comment: 4 pages, 6 figure
Simulating Particle Dispersions in Nematic Liquid-Crystal Solvents
A new method is presented for mesoscopic simulations of particle dispersions
in nematic liquid crystal solvents. It allows efficient first-principle
simulations of the dispersions involving many particles with many-body
interactions mediated by the solvents. A simple demonstration is shown for the
aggregation process of a two dimentional dispersion.Comment: 5 pages, 5 figure
Identification of QTLs controlling gene expression networks defined a priori
BACKGROUND: Gene expression microarrays allow the quantification of transcript accumulation for many or all genes in a genome. This technology has been utilized for a range of investigations, from assessments of gene regulation in response to genetic or environmental fluctuation to global expression QTL (eQTL) analyses of natural variation. Current analysis techniques facilitate the statistical querying of individual genes to evaluate the significance of a change in response, also known as differential expression. Since genes are also known to respond as groups due to their membership in networks, effective approaches are needed to investigate transcriptome variation as related to gene network responses. RESULTS: We describe a statistical approach that is capable of assessing higher-order a priori defined gene network response, as measured by microarrays. This analysis detected significant network variation between two Arabidopsis thaliana accessions, Bay-0 and Shahdara. By extending this approach, we were able to identify eQTLs controlling network responses for 18 out of 20 a priori-defined gene networks in a recombinant inbred line population derived from accessions Bay-0 and Shahdara. CONCLUSION: This approach has the potential to be expanded to facilitate direct tests of the relationship between phenotypic trait and transcript genetic architecture. The use of a priori definitions for network eQTL identification has enormous potential for providing direction toward future eQTL analyses
Direct measurements of the effects of salt and surfactant on interaction forces between colloidal particles at water-oil interfaces
The forces between colloidal particles at a decane-water interface, in the
presence of low concentrations of a monovalent salt (NaCl) and of the
surfactant sodium dodecylsulfate (SDS) in the aqueous subphase, have been
studied using laser tweezers. In the absence of electrolyte and surfactant,
particle interactions exhibit a long-range repulsion, yet the variation of the
interaction for different particle pairs is found to be considerable. Averaging
over several particle pairs was hence found to be necessary to obtain reliable
assessment of the effects of salt and surfactant. It has previously been
suggested that the repulsion is consistent with electrostatic interactions
between a small number of dissociated charges in the oil phase, leading to a
decay with distance to the power -4 and an absence of any effect of electrolyte
concentration. However, the present work demonstrates that increasing the
electrolyte concentration does yield, on average, a reduction of the magnitude
of the interaction force with electrolyte concentration. This implies that
charges on the water side also contribute significantly to the electrostatic
interactions. An increase in the concentration of SDS leads to a similar
decrease of the interaction force. Moreover the repulsion at fixed SDS
concentrations decreases over longer times. Finally, measurements of three-body
interactions provide insight into the anisotropic nature of the interactions.
The unique time-dependent and anisotropic interactions between particles at the
oil-water interface allow tailoring of the aggregation kinetics and structure
of the suspension structure.Comment: Submitted to Langmui
Interaction and flocculation of spherical colloids wetted by a surface-induced corona of paranematic order
Particles dispersed in a liquid crystal above the nematic-isotropic phase
transition are wetted by a surface-induced corona of paranematic order. Such
coronas give rise to pronounced two-particle interactions. In this article, we
report details on the analytical and numerical study of these interactions
published recently [Phys. Rev. Lett. 86, 3915 (2001)]. We especially
demonstrate how for large particle separations the asymptotic form of a Yukawa
potential arises. We show that the Yukawa potential is a surprisingly good
description for the two-particle interactions down to distances of the order of
the nematic coherence length. Based on this fact, we extend earlier studies on
a temperature induced flocculation transition in electrostatically stabilized
colloidal dispersions [Phys. Rev. E 61, 2831 (2000)]. We employ the Yukawa
potential to establish a flocculation diagram for a much larger range of the
electrostatic parameters, namely the surface charge density and the Debye
screening length. As a new feature, a kinetically stabilized dispersion close
to the nematic-isotropic phase transition is found.Comment: Revtex v4.0, 16 pages, 12 Postscript figures. Accepted for
publication in Phys. Rev.
Natural Variation in Partial Resistance to Pseudomonas syringae Is Controlled by Two Major QTLs in Arabidopsis thaliana
BACKGROUND: Low-level, partial resistance is pre-eminent in natural populations, however, the mechanisms underlying this form of resistance are still poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we used the model pathosystem Pseudomonas syringae pv. tomato DC3000 (Pst) - Arabidopsis thaliana to study the genetic basis of this form of resistance. Phenotypic analysis of a set of Arabidopsis accessions, based on evaluation of in planta pathogen growth revealed extensive quantitative variation for partial resistance to Pst. It allowed choosing a recombinant inbred line (RIL) population derived from a cross between the accessions Bayreuth and Shahdara for quantitative genetic analysis. Experiments performed under two different environmental conditions led to the detection of two major and two minor quantitative trait loci (QTLs) governing partial resistance to Pst and called PRP-Ps1 to PRP-Ps4. The two major QTLs, PRP-Ps1 and PRP-Ps2, were confirmed in near isogenic lines (NILs), following the heterogeneous inbred families (HIFs) strategy. Analysis of marker gene expression using these HIFs indicated a negative correlation between the induced amount of transcripts of SA-dependent genes PR1, ICS and PR5, and the in planta bacterial growth in the HIF segregating at PRP-Ps2 locus, suggesting an implication of PRP-Ps2 in the activation of SA dependent responses. CONCLUSIONS/SIGNIFICANCE: These results show that variation in partial resistance to Pst in Arabidopsis is governed by relatively few loci, and the validation of two major loci opens the way for their fine mapping and their cloning, which will improve our understanding of the molecular mechanisms underlying partial resistance
- …