10,548 research outputs found

    Dirichlet-Neumann and Neumann-Neumann Waveform Relaxation for the Wave Equation

    Full text link
    We present a Waveform Relaxation (WR) version of the Dirichlet-Neumann and Neumann-Neumann algorithms for the wave equation in space time. Each method is based on a non-overlapping spatial domain decomposition, and the iteration involves subdomain solves in space time with corresponding interface condition, followed by a correction step. Using a Laplace transform argument, for a particular relaxation parameter, we prove convergence of both algorithms in a finite number of steps for finite time intervals. The number of steps depends on the size of the subdomains and the time window length on which the algorithms are employed. We illustrate the performance of the algorithms with numerical results, and also show a comparison with classical and optimized Schwarz WR methods.Comment: 8 pages, 6 figures, presented in 22nd International conference on Domain Decomposition Methods, to appear in Domain Decomposition in Science and Engineering XXII, LNCSE, Springer-Verlag 201

    The Radon Monitoring System in Daya Bay Reactor Neutrino Experiment

    Full text link
    We developed a highly sensitive, reliable and portable automatic system (H3^{3}) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H3^{3} is able to measure radon concentration with a statistical error less than 10\% in a 1-hour measurement of dehumidified air (R.H. 5\% at 25∘^{\circ}C) with radon concentration as low as 50 Bq/m3^{3}. This is achieved by using a large radon progeny collection chamber, semiconductor α\alpha-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013

    Tacit knowledge and the biological weapons regime

    Get PDF
    Bioterrorism has become increasingly salient in security discourse in part because of perceived changes in the capacity and geography of life science research. Yet its salience is founded upon a framing of changes in science and security that does not always take into consideration the somewhat slippery concept of ‘tacit knowledge’, something poorly understood, disparately conceptualised and often marginalised in discussions on state and non-state biological weapons programmes. This paper looks at how changes in science and technology—particularly the evolution of information and communications technology—has contributed to the partial erosion of aspects of tacit knowledge and the implications for the biological weapons regime. This paper concludes by arguing that the marginalisation of tacit knowledge weakens our understanding of the difficulties encountered in biological weapons programmes and can result in distorted perceptions of the threat posed by dual-use biotechnology in the 21st century

    The Catalytic and Non-catalytic Functions of the Brahma Chromatin-Remodeling Protein Collaborate to Fine-Tune Circadian Transcription in Drosophila.

    Get PDF
    Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription

    An Infrared Imaging Study of the Bipolar Proto-Planetary Nebula IRAS 16594-4656

    Full text link
    High-resolution mid-infrared images have been obtained in N-band and Q-band for the proto-planetary nebula IRAS 16594-4656. A bright equatorial torus and a pair of bipolar lobes can clearly be seen in the infrared images. The torus appears thinner at the center than at the edges, suggesting that it is viewed nearly edge-on. The infrared lobes correspond to the brightest lobes of the reflection nebula seen in the Hubble Space Telescope (HST) optical image, but with no sign of the point-symmetric structure seen in the visible image. The lobe structure shows a close correspondence with a molecular hydrogen map obtained with HST, suggesting that the dust emission in the lobes traces the distribution of the shocked gas. The shape of the bipolar lobes shows clearly that the fast outflow is still confined by the remnant circumstellar envelope of the progenitor asymptotic giant branch (AGB) star. However, the non-detection of the dust outside of the lobes suggests that the temperature of the dust in the AGB envelope is too low for it to be detected at 20 microns.Comment: Accepted by the Astrophysical Journa
    • 

    corecore