11,935 research outputs found

    Optimal Eavesdropping in Quantum Cryptography. II. Quantum Circuit

    Full text link
    It is shown that the optimum strategy of the eavesdropper, as described in the preceding paper, can be expressed in terms of a quantum circuit in a way which makes it obvious why certain parameters take on particular values, and why obtaining information in one basis gives rise to noise in the conjugate basis.Comment: 7 pages, 1 figure, Latex, the second part of quant-ph/970103

    Constraints on millicharged particles with low threshold germanium detectors at Kuo-Sheng Reactor Neutrino Laboratory

    Get PDF
    Relativistic millicharged particles (χq\chi_q) have been proposed in various extensions to the Standard Model of particle physics. We consider the scenarios where they are produced at nuclear reactor core and via interactions of cosmic-rays with the earth's atmosphere. Millicharged particles could also be candidates for dark matter, and become relativistic through acceleration by supernova explosion shock waves. The atomic ionization cross section of χq\chi_q with matter are derived with the equivalent photon approximation. Smoking-gun signatures with significant enhancement in the differential cross section are identified. New limits on the mass and charge of χq\chi_q are derived, using data taken with a point-contact germanium detector with 500g mass functioning at an energy threshold of 300~eV at the Kuo-Sheng Reactor Neutrino Laboratory.Comment: 8 pages, 7 figure

    Magnetism and the Weiss Exchange Field - A Theoretical Analysis Inspired by Recent Experiments

    Full text link
    The huge spin precession frequency observed in recent experiments with spin-polarized beams of hot electrons shot through magnetized films is interpreted as being caused by Zeeman coupling of the electron spins to the so-called Weiss exchange field in the film. A "Stern-Gerlach experiment" for electrons moving through an inhomogeneous exchange field is proposed. The microscopic origin of exchange interactions and of large mean exchange fields, leading to different types of magnetic order, is elucidated. A microscopic derivation of the equations of motion of the Weiss exchange field is presented. Novel proofs of the existence of phase transitions in quantum XY-models and antiferromagnets, based on an analysis of the statistical distribution of the exchange field, are outlined.Comment: 36 pages, 3 figure

    Controlled Quantum Secret Sharing

    Full text link
    We present a new protocol in which a secret multiqubit quantum state Ψ\ket{\Psi} is shared by nn players and mm controllers, where Ψ\ket{\Psi} is the encoding state of a quantum secret sharing scheme. The players may be considered as field agents responsible for carrying out a task, using the secret information encrypted in Ψ\ket{\Psi}, while the controllers are superiors who decide if and when the task should be carried out and who to do it. Our protocol only requires ancillary Bell states and Bell-basis measurements.Comment: 6 pages, 0 figure, RevTeX4; published version with minor change

    Radio Continuum and Star Formation in CO-rich Early Type Galaxies

    Full text link
    In this paper we present new high resolution VLA 1.4 GHz radio continuum observations of five FIR bright CO-rich early-type galaxies and two dwarf early-type galaxies. The position on the radio-FIR correlation combined with striking agreements in morphology between high resolution CO and radio maps show that the radio continuum is associated with star formation in at least four of the eight galaxies. The average star formation rate for the sample galaxies detected in radio is approximately 2 solar masses per year. There is no evidence of a luminous AGN in any of our sample galaxies. We estimate Toomre Q values and find that the gas disks may well be gravitationally unstable, consistent with the above evidence for star formation activity. The radio continuum emission thus corroborates other recent suggestions that star formation in early type galaxies may not be uncommon.Comment: 21 pages, 7 figures, to be published in the Astronomical Journa

    Magnetic field tuning of antiferromagnetic Yb3_{3}Pt4_{4}

    Get PDF
    We present measurements of the specific heat, magnetization, magnetocaloric effect and magnetic neutron diffraction carried out on single crystals of antiferromagnetic Yb3_{3}Pt4_{4}, where highly localized Yb moments order at TN=2.4T_{\rm N}=2.4 K in zero field. The antiferromagnetic order was suppressed to TN0T_{\rm N}\rightarrow 0 by applying a field of 1.85 T in the abab plane. Magnetocaloric effect measurements show that the antiferromagnetic phase transition is always continuous for TN>0T_{\rm N}>0, although a pronounced step in the magnetization is observed at the critical field in both neutron diffraction and magnetization measurements. These steps sharpen with decreasing temperature, but the related divergences in the magnetic susceptibility are cut off at the lowest temperatures, where the phase line itself becomes vertical in the field-temperature plane. As TN0T_{\rm N}\rightarrow0, the antiferromagnetic transition is increasingly influenced by a quantum critical endpoint, where TNT_{\rm N} ultimately vanishes in a first order phase transition.Comment: 9 pages, 6 figure
    corecore