4,078 research outputs found

    QCD phase diagram and charge fluctuations

    Get PDF
    We discuss the phase structure and fluctuations of conserved charges in two flavor QCD. The importance of the density fluctuations to probe the existence of the critical end point is summarized. The role of these fluctuations to identify the first order phase transition in the presence of spinodal phase separation is also discussed.Comment: 8 pages, 8 figures, plenary talk given at the 19th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2006 (QM 2006), Shanghai, China, 14-20 Nov 200

    Petrov types of slowly rotating fluid balls

    Get PDF
    Circularly rotating axisymmetric perfect fluid space-times are investigated to second order in the small angular velocity. The conditions of various special Petrov types are solved in a comoving tetrad formalism. A number of theorems are stated on the possible Petrov types of various fluid models. It is shown that Petrov type II solutions must reduce to the de Sitter spacetime in the static limit. Two space-times with a physically satisfactory energy-momentum tensor are investigated in detail. For the rotating incompressible fluid, it is proven that the Petrov type cannot be D. The equation of the rotation function ω\omega can be solved for the Tolman type IV fluid in terms of quadratures. It is also shown that the rotating version of the Tolman IV space-time cannot be Petrov type D.Comment: 14 pages, version to appear in Gen. Rel. Gra

    Quark and Nuclear Matter in the Linear Chiral Meson Model

    Full text link
    We present an analytical description of the phase transitions from a nucleon gas to nuclear matter and from nuclear matter to quark matter within the same model. The equation of state for quark and nuclear matter is encoded in the effective potential of a linear sigma model. We exploit an exact differential equation for its dependence upon the chemical potential μ\mu associated to conserved baryon number. An approximate solution for vanishing temperature is used to discuss possible phase transitions as the baryon density increases. For a nucleon gas and nuclear matter we find a substantial density enhancement as compared to quark models which neglect the confinement to baryons. The results point out that the latter models are not suitable to discuss the phase diagram at low temperature.Comment: 27 pages, Int.J.Mod.Phys.A versio

    EoS of finite density QCD with Wilson fermions by Multi-Parameter Reweighting and Taylor expansion

    Full text link
    The equation of state (EoS), quark number density and susceptibility at nonzero quark chemical potential μ\mu are studied in lattice QCD simulations with a clover-improved Wilson fermion of 2-flavors and RG-improved gauge action. To access nonzero μ\mu, we employ two methods : a multi-parameter reweighting (MPR) in μ\mu and β\beta and Taylor expansion in μ/T\mu/T. The use of a reduction formula for the Wilson fermion determinant enables to study the reweighting factor in MPR explicitly and heigher-order coefficients in Taylor expansion free from errors of noise method, although calculations are limited to small lattice size. As a consequence, we can study the reliability of the thermodynamical quantities through the consistency of the two methods, each of which has different origin of the application limit. The thermodynamical quantities are obtained from simulations on a 83×48^3\times 4 lattice with an intermediate quark mass(mPS/mV=0.8)m_{\rm PS}/m_{\rm V}=0.8). The MPR and Taylor expansion are consistent for the EoS and number density up to μ/T0.8\mu/T\sim 0.8 and for the number susceptibility up to μ/T0.6\mu/T \sim 0.6. This implies within a given statistics that the overlap problem for the MPR and truncation error for the Taylor expansion method are negligible in these regions. In order to make MPR methods work, the fluctuation of the reweighting factor should be small. We derive the equation of the reweighting line where the fluctuation is small, and show that the equation of the reweighting line is consistent with the fluctuation minimum condition.Comment: 20 pages, 11 figures. Accepted to JHEP. Discussions are added. Figures for Taylor coefficients (Fig. 7) are modifie

    An effective chiral Hadron-Quark Equation of State

    Full text link
    We construct an effective model for the QCD equation of state, taking into account chiral symmetry restoration as well as the deconfinement phase transition. The correct asymptotic degrees of freedom at the high and low temperature limits are included (quarks \leftrightarrow hadrons). The model shows a rapid crossover for both order parameters, as is expected from lattice calculations. We then compare the thermodynamic properties of the model at μB=0\mu_B=0 which turn out to be in qualitative agreement with lattice data, while apparent quantitative differences can be attributed to hadronic contributions and excluded volume corrections. Furthermore we discuss the effects of a repulsive vector type quark interaction at finite baryon number densities on the resulting phase diagram of the model. Our current model is able to reproduce a first-order liquid gas phase transition as expected, but does not show any signs of a first order deconfinement or chiral phase transition. Both transitions rather appear as a very wide crossover in which heavily medium modified hadron coexist with free quarks.Comment: 19 pages, 13 figures Version accepted by J. Phys.

    The QCD phase diagram from analytic continuation

    Get PDF
    We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to μB300\mu_B\approx 300 MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on Nt=N_t= 10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value κ=0.0149±0.0021\kappa = 0.0149 \pm 0.0021.Comment: 14 pages, 4 figures, revised versio

    Technicolor and Beyond: Unification in Theory Space

    Get PDF
    The salient features of models of dynamical electroweak symmetry breaking are reviewed. The ideal walking idea is introduced according to which one should carefully take into account the effects of the extended technicolor dynamics on the technicolor dynamics itself. The effects amount at the enhancement of the anomalous dimension of the mass of the techniquarks allowing to decouple the Flavor Changing Neutral Currents problem from the one of the generation of the top mass. Precision data constraints are reviewed focussing on the latest crucial observation that the S-parameter can be computed exactly near the upper end of the conformal window (Conformal S-parameter) with relevant consequences on the selection of nature's next strong force. We will then introduce the Minimal Walking Technicolor (MWT) models. In the second part of this review we consider the interesting possibility to marry supersymmetry and technicolor. The reason is to provide a unification of different extensions of the standard model. For example, this means that one can recover, according to the parameters and spectrum of the theory distinct extensions of the standard model, from supersymmetry to technicolor and unparticle physiscs. A surprising result is that a minimal (in terms of the smallest number of fields) supersymmetrization of the MWT model leads to the maximal supersymmetry in four dimensions, i.e. N=4 SYM.Comment: Extended version of the PASCOS10 proceedings for the Plenary Tal

    Extremely energetic cosmic neutrinos: Opportunities for astrophysics, particle physics, and cosmology

    Full text link
    Existing and planned observatories for cosmic neutrinos open up a huge window in energy from 10^7 to 10^17 GeV. Here, we discuss in particular the possibilities to use extremely energetic cosmic neutrinos as a diagnostic of astrophysical processes, as a tool for particle physics beyond the Standard Model, and as a probe of cosmology.Comment: 10 pages, 7 figures, ws-procs9x6.cls, talk presented at the ARENA Workshop, DESY, Zeuthen, Germany, May 17-19, 200

    The QCD equation of state at finite density from analytical continuation

    Get PDF
    We determine the equation of state of QCD at finite chemical potential, to order (μB/T)6(\mu_B/T)^6, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the results are continuum extrapolated using lattices of up to Nt=16N_t=16 temporal resolution. The QCD pressure and interaction measure are calculated along the isentropic trajectories in the (T, μB)(T,~\mu_B) plane corresponding to the RHIC Beam Energy Scan collision energies. Their behavior is determined through analytic continuation from imaginary chemical potentials of the baryonic density. We also determine the Taylor expansion coefficients around μB=0\mu_B=0 from the simulations at imaginary chemical potentials. Strangeness neutrality and charge conservation are imposed, to match the experimental conditions.Comment: 5 pages, 4 figure

    Towards the QCD phase diagram from analytical continuation

    Full text link
    We calculate the QCD cross-over temperature, the equation of state and fluctuations of conserved charges at finite density by analytical continuation from imaginary to real chemical potentials. Our calculations are based on new continuum extrapolated lattice simulations using the 4stout staggered actions with a lattice resolution up to Nt=16N_t=16. The simulation parameters are tuned such that the strangeness neutrality is maintained, as it is in heavy ion collisions.Comment: 4 pages, 2 figures, Proceedings of the Quark Matter 2015 conference, Kobe, Japa
    corecore