3,636 research outputs found

    Quantum integrability of quadratic Killing tensors

    Get PDF
    Quantum integrability of classical integrable systems given by quadratic Killing tensors on curved configuration spaces is investigated. It is proven that, using a "minimal" quantization scheme, quantum integrability is insured for a large class of classic examples.Comment: LaTeX 2e, no figure, 35 p., references added, minor modifications. To appear in the J. Math. Phy

    Evolution of spectral properties along the O(6)-U(5) transition in the interacting boson model. II. Classical trajectories

    Full text link
    This article continues our previous study of level dynamics in the [O(6)-U(5)]⊃\supsetO(5) transition of the interacting boson model [nucl-th/0504016] using the semiclassical theory of spectral fluctuations. We find classical monodromy, related to a singular bundle of orbits with infinite period at energy E=0, and bifurcations of numerous periodic orbits for E>0. The spectrum of allowed ratios of periods associated with beta- and gamma-vibrations exhibits an abrupt change around zero energy. These findings explain anomalous bunching of quantum states in the E≈\approx0 region, which is responsible for the redistribution of levels between O(6) and U(5) multiplets.Comment: 11 pages, 7 figures; continuation of nucl-th/050401

    Vanishing Twist near Focus-Focus Points

    Full text link
    We show that near a focus-focus point in a Liouville integrable Hamiltonian system with two degrees of freedom lines of locally constant rotation number in the image of the energy-momentum map are spirals determined by the eigenvalue of the equilibrium. From this representation of the rotation number we derive that the twist condition for the isoenergetic KAM condition vanishes on a curve in the image of the energy-momentum map that is transversal to the line of constant energy. In contrast to this we also show that the frequency map is non-degenerate for every point in a neighborhood of a focus-focus point.Comment: 13 page

    Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier

    Full text link
    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 4, on the Cosmic Frontier, discusses the program of research relevant to cosmology and the early universe. This area includes the study of dark matter and the search for its particle nature, the study of dark energy and inflation, and cosmic probes of fundamental symmetries.Comment: 61 page

    Maslov Indices and Monodromy

    Get PDF
    We prove that for a Hamiltonian system on a cotangent bundle that is Liouville-integrable and has monodromy the vector of Maslov indices is an eigenvector of the monodromy matrix with eigenvalue 1. As a corollary the resulting restrictions on the monodromy matrix are derived.Comment: 6 page

    Semiclassical analysis of Wigner 3j3j-symbol

    Get PDF
    We analyze the asymptotics of the Wigner 3j3j-symbol as a matrix element connecting eigenfunctions of a pair of integrable systems, obtained by lifting the problem of the addition of angular momenta into the space of Schwinger's oscillators. A novel element is the appearance of compact Lagrangian manifolds that are not tori, due to the fact that the observables defining the quantum states are noncommuting. These manifolds can be quantized by generalized Bohr-Sommerfeld rules and yield all the correct quantum numbers. The geometry of the classical angular momentum vectors emerges in a clear manner. Efficient methods for computing amplitude determinants in terms of Poisson brackets are developed and illustrated.Comment: 7 figure file
    • 

    corecore