608 research outputs found

    Asymmetry dependence of proton correlations

    Get PDF
    A dispersive optical model analysis of p+40Ca and p+48Ca interactions has been carried out. The real and imaginary potentials have been constrained from fits to elastic scattering data, reaction cross sections, and level properties of valence hole states deduced from (e,e'p) data. The surface imaginary potential was found to be larger overall and the gap in this potential on either side of the Fermi energy was found to be smaller for the neutron-rich p+48Ca system. These results imply that protons with energies near the Fermi surface experience larger correlations with increasing asymmetry.Comment: 4 pages, 5 figure

    Transfer reactions and the dispersive optical-model

    Full text link
    The dispersive optical-model is applied to transfer reactions. A systematic study of (d,p)(d,p) reactions on closed-shell nuclei using the finite-range adiabatic reaction model is performed at several beam energies and results are compared to data as well as to predictions using a standard global optical-potential. Overall, we find that the dispersive optical-model is able to describe the angular distributions as well as or better than the global parameterization. In addition, it also constrains the overlap function. Spectroscopic factors extracted using the dispersive optical-model are generally lower than those using standard parameters, exhibit a reduced dependence on beam energy, and are more in line with results obtained from (e,ep)(e,e'p) measurements.Comment: Phys. Rev. C 84, 044611 (2011

    Tidal effects and the Proximity decay of nuclei

    Get PDF
    We examine the decay of the 3.03 MeV state of 8^8Be evaporated from an excited projectile-like fragment following a peripheral heavy-ion collision. The relative energy of the daughter α\alpha particles exhibits a dependence on the decay angle of the 8^8Be^*, indicative of a tidal effect. Comparison of the measured tidal effect with a purely Coulomb model suggests the influence of a measurable nuclear proximity interaction.Comment: 5 pages, 4 figure

    Angular momentum sharing in dissipative collisions

    Full text link
    Light charged particles emitted by the projectile-like fragment were measured in the direct and reverse collision of 93^{93}Nb and 116^{116}Sn at 25 AMeV. The experimental multiplicities of Hydrogen and Helium particles as a function of the primary mass of the emitting fragment show evidence for a correlation with net mass transfer. The ratio of Hydrogen and Helium multiplicities points to a dependence of the angular momentum sharing on the net mass transfer.Comment: 8 pages, 2 figure

    Space and Time pattern of mid-velocity IMF emission in peripheral heavy-ion collisions at Fermi energies

    Full text link
    The emission pattern in the V_perp - V_par plane of Intermediate Mass Fragments with Z=3-7 (IMF) has been studied in the collision 116Sn + 93Nb at 29.5 AMeV as a function of the Total Kinetic Energy Loss of the reaction. This pattern shows that for peripheral reactions most of IMF's are emitted at mid-velocity. Coulomb trajectory calculations demonstrate that these IMF's are produced in the early stages of the reaction and shed light on geometrical details of these emissions, suggesting that the IMF's originate both from the neck and the surface of the interacting nuclei.Comment: 4 pages, 3 figures, RevTex 3.1, submitted to Phys. Rev. Letter

    Validity of the distorted-wave impulse-approximation description of 40{}^{40}Ca(e,ep)39(e,e'p)^{39}K data using only ingredients from a nonlocal dispersive optical model

    Full text link
    The nonlocal implementation of the dispersive optical model (DOM) provides all the ingredients for distorted-wave impulse-approximation (DWIA) calculations of the (e,ep)(e,e'p) reaction. It provides both the overlap function, including its normalization, and the outgoing proton distorted wave. This framework is applied to describe the knockout of a proton from the 0d320\textrm{d}\frac{3}{2} and 1s121\textrm{s}\frac{1}{2} orbitals in 40{}^{40}Ca with fixed normalizations of 0.71 and 0.60, respectively. Data were obtained in parallel kinematics for three outgoing proton energies: 70, 100, and 135 MeV. Agreement with the data is as good as, or better than, previous descriptions employing local optical potentials and overlap functions from Woods-Saxon potentials - both with standard nonlocality corrections - whose normalization (spectroscopic factor) and radius were fitted to the data. The present analysis suggests that slightly larger spectroscopic factors are obtained when nonlocal optical potentials are employed than those generated with local potentials. The results further suggest that the chosen kinematical window around 100 MeV proton energy provides the best and cleanest method to employ the DWIA for the analysis of this reaction. The conclusion that substantial ground-state correlations cannot be ignored when describing a closed-shell atomic nucleus is therefore confirmed in detail. To reach these conclusions, it is essential to have a complete description of the nucleon single-particle propagator that accounts for all elastic nucleon-scattering observables in a wide energy domain up to 200 MeV. The current nonlocal implementation of the DOM fulfills this requirement.Comment: 15 pages, 11 figure

    Nonlocal extension of the dispersive-optical-model to describe data below the Fermi energy

    Full text link
    Present applications of the dispersive-optical-model analysis are restricted by the use of a local but energy-dependent version of the generalized Hartree-Fock potential. This restriction is lifted by the introduction of a corresponding nonlocal potential without explicit energy dependence. Such a strategy allows for a complete determination of the nucleon propagator below the Fermi energy with access to the expectation value of one-body operators (like the charge density), the one-body density matrix with associated natural orbits, and complete spectral functions for removal strength. The present formulation of the dispersive optical model (DOM) therefore allows the use of elastic electron-scattering data in determining its parameters. Application to 40{}^{40}Ca demonstrates that a fit to the charge radius leads to too much charge near the origin using the conventional assumptions of the functional form of the DOM. A corresponding incomplete description of high-momentum components is identified, suggesting that the DOM formulation must be extended in the future to accommodate such correlations properly. Unlike the local version, the present nonlocal DOM limits the location of the deeply-bound hole states to energies that are consistent with (\textit{e,e}^{\prime}\textit{p}) and (\textit{p,2p}) data.Comment: 14 pages, 10 figures, submitted to Physical Review
    corecore