2,776 research outputs found
Localised Black Holes
We numerically construct asymptotically global black holes that are localised on the . These are
solutions to type IIB supergravity with horizon topology that
dominate the theory in the microcanonical ensemble at small energies. At higher
energies, there is a first-order phase transition to
-Schwarzschild. By the AdS/CFT
correspondence, this transition is dual to spontaneously breaking the
R-symmetry of super Yang-Mills down to . We extrapolate
the location of this phase transition and compute the expectation value of the
resulting scalar operators in the low energy phase.Comment: 11 pages, 6 figure
Lumpy AdS S Black Holes and Black Belts
Sufficiently small Schwarzschild black holes in global AdSS are
Gregory-Laflamme unstable. We construct new families of black hole solutions
that bifurcate from the onset of this instability and break the full SO
symmetry group of the S down to SO. These new "lumpy" solutions are
labelled by the harmonics . We find evidence that the branch
never dominates the microcanonical/canonical ensembles and connects through a
topology-changing merger to a localised black hole solution with S
topology. We argue that these S black holes should become the dominant
phase in the microcanonical ensemble for small enough energies, and that the
transition to Schwarzschild black holes is first order. Furthermore, we find
two branches of solutions with . We expect one of these branches to
connect to a solution containing two localised black holes, while the other
branch connects to a black hole solution with horizon topology which we call a "black belt".Comment: 20 pages (plus 17 pages for Appendix on Kaluza-Klein Holography), 14
figure
Viewpoints: A high-performance high-dimensional exploratory data analysis tool
Scientific data sets continue to increase in both size and complexity. In the
past, dedicated graphics systems at supercomputing centers were required to
visualize large data sets, but as the price of commodity graphics hardware has
dropped and its capability has increased, it is now possible, in principle, to
view large complex data sets on a single workstation. To do this in practice,
an investigator will need software that is written to take advantage of the
relevant graphics hardware. The Viewpoints visualization package described
herein is an example of such software. Viewpoints is an interactive tool for
exploratory visual analysis of large, high-dimensional (multivariate) data. It
leverages the capabilities of modern graphics boards (GPUs) to run on a single
workstation or laptop. Viewpoints is minimalist: it attempts to do a small set
of useful things very well (or at least very quickly) in comparison with
similar packages today. Its basic feature set includes linked scatter plots
with brushing, dynamic histograms, normalization and outlier detection/removal.
Viewpoints was originally designed for astrophysicists, but it has since been
used in a variety of fields that range from astronomy, quantum chemistry, fluid
dynamics, machine learning, bioinformatics, and finance to information
technology server log mining. In this article, we describe the Viewpoints
package and show examples of its usage.Comment: 18 pages, 3 figures, PASP in press, this version corresponds more
closely to that to be publishe
Prestige drives epistemic inequality in the diffusion of scientific ideas
The spread of ideas in the scientific community is often viewed as a
competition, in which good ideas spread further because of greater intrinsic
fitness, and publication venue and citation counts correlate with importance
and impact. However, relatively little is known about how structural factors
influence the spread of ideas, and specifically how where an idea originates
might influence how it spreads. Here, we investigate the role of faculty hiring
networks, which embody the set of researcher transitions from doctoral to
faculty institutions, in shaping the spread of ideas in computer science, and
the importance of where in the network an idea originates. We consider
comprehensive data on the hiring events of 5032 faculty at all 205
Ph.D.-granting departments of computer science in the U.S. and Canada, and on
the timing and titles of 200,476 associated publications. Analyzing five
popular research topics, we show empirically that faculty hiring can and does
facilitate the spread of ideas in science. Having established such a mechanism,
we then analyze its potential consequences using epidemic models to simulate
the generic spread of research ideas and quantify the impact of where an idea
originates on its longterm diffusion across the network. We find that research
from prestigious institutions spreads more quickly and completely than work of
similar quality originating from less prestigious institutions. Our analyses
establish the theoretical trade-offs between university prestige and the
quality of ideas necessary for efficient circulation. Our results establish
faculty hiring as an underlying mechanism that drives the persistent epistemic
advantage observed for elite institutions, and provide a theoretical lower
bound for the impact of structural inequality in shaping the spread of ideas in
science.Comment: 10 pages, 8 figures, 1 tabl
Can Self-Organizing Maps accurately predict photometric redshifts?
We present an unsupervised machine learning approach that can be employed for
estimating photometric redshifts. The proposed method is based on a vector
quantization approach called Self--Organizing Mapping (SOM). A variety of
photometrically derived input values were utilized from the Sloan Digital Sky
Survey's Main Galaxy Sample, Luminous Red Galaxy, and Quasar samples along with
the PHAT0 data set from the PHoto-z Accuracy Testing project. Regression
results obtained with this new approach were evaluated in terms of root mean
square error (RMSE) to estimate the accuracy of the photometric redshift
estimates. The results demonstrate competitive RMSE and outlier percentages
when compared with several other popular approaches such as Artificial Neural
Networks and Gaussian Process Regression. SOM RMSE--results (using
z=z--z) for the Main Galaxy Sample are 0.023, for the
Luminous Red Galaxy sample 0.027, Quasars are 0.418, and PHAT0 synthetic data
are 0.022. The results demonstrate that there are non--unique solutions for
estimating SOM RMSEs. Further research is needed in order to find more robust
estimation techniques using SOMs, but the results herein are a positive
indication of their capabilities when compared with other well-known methods.Comment: 5 pages, 3 figures, submitted to PAS
A mechanistic-empirical based overlay design method for reflective cracking
This paper describes a new and innovative mechanistically based pavement overlay design method that considers the most predominant type of overlay distress observed in the field: Reflective cracking above old cracks in the underlying pavement surface. Both dense-graded hot mix asphalt and gap-graded asphalt rubber (wet process) mixes were studied, in the laboratory and in the field, to derive the necessary mechanistic relationships
and statistically based equations. The models proposed are based on a finite element model
that closely approximates actual field phenomena. Many field test sections, in Arizona, California and Portugal, were studied during the course of the research.
Other HMA mixes used for overlays may also be calibrated and used through the proposed
method. However, the relevant mix properties of any additional materials or environmental
zones must first be determined. The two mix types studied are mainly used in the desert
southwest region of Arizona and California. The overlay design program is available from
the Rubber Pavements Association or Arizona Department of Transportation in the form of an Excel spreadsheet with an easy-to-use visual basic computer program (macro)
Brief Note: Growth of Pisidium Casertanum (Poli) in West Central Ohio
Author Institution: Department of Biology, University of Dayto
Life Cycle of a Torrenticolous Hawaiian Chironomid (Telmatogeton Torrenticola): Stream Flow and Microhabitat Effects
In this study we documented the instar densities and life cycle of Telmatogeton torrenticola Terry (Chironomidae : Telmatogetoninae) from Kinihapai Stream, Maui, Hawaii. Greatest larval densities of this midge are found on substrates of high velocity, shallow flows of cascades, and splash zones of waterfalls, with lower densities in riffles. In the summer of 1994 we compared the effects of two microhabitats (termed optimal and suboptimal) on inter-instar density and relative abundance. In a second year (1995), we evaluated the effect of long-term reduced stream flow on these variables only in optimal microhabitats. A significant reduction in stream flow from 1994 to 1995 was correlated with a similar reduction in larval densities that precluded larval colonization of suboptimal habitats in 1995, thereby preventing sampling in this microhabitat during that summer. Depth of optimal habitats of 1995 were significantly shallower than both habitats of 1994, with suboptimal habitats of 1994 the deepest. Total larval density was significantly higher in 1994 optimal habitats, while 1994 suboptimal and 1995 optimal habitats were statistically similar. Individual instar densities showed variable differences among habitats and years, with the first three instars always highest in 1994 optimal habitats. All instars and pupae were collected on most sampling dates in both years ; however, pupae were only collected on a two dates in suboptimal habitats of 1994. Based on larval size frequency histograms, T. torrenticola has a multivoltine, asynchronous life cycle, with continuous reproduction, which is variable among microhabitats characterized by different flow velocity and depth, and between years of differing stream discharge. Reduced stream flow during the summer of 1995 had effects of reducing densities and changing life cycle features similar to those found in 1994 (a year of higher stream flow) suboptimal habitats
X-ray Over-Luminous Elliptical Galaxies: A New Class of Mass Concentrations in the Universe?
We detect four isolated, X-ray over-luminous (Lx>2e43 [h/0.5]**-2 erg/s)
elliptical galaxies (OLEGs) in our 160 square degree ROSAT PSPC survey. The
extent of their X-ray emission, total X-ray luminosity, total mass, and mass of
the hot gas in these systems correspond to poor clusters, and the optical
luminosity of the central galaxies (M_R<-22.5 + 5 lg h) is comparable to that
of cluster cDs. However, there are no detectable fainter galaxy concentrations
around the central elliptical. The mass-to-light ratio within the radius of
detectable X-ray emission is in the range 250-450 Msun/Lsun, which is 2-3 times
higher than typically found in clusters or groups. These objects can be the
result of galaxy merging within a group. However, their high M/L values are
difficult to explain in this scenario. OLEGs must have been undisturbed for a
very long time, which makes them the ultimate examples of systmes in
hydrostatic equilibrium. The number density of OLEGs is n=2.4(+3.1-1.2}x10**-7
(h/0.5)**-3 Mpc**-3 at the 90% confidence. They comprise 20% of all clusters
and groups of comparable X-ray luminosity, and nearly all galaxies brighter
than M_R=-22.5. The estimated contirubution of OLEGs to the total mass density
in the Universe is close to that of T>7 keV clusters.Comment: 4 pages, 2 figures, uses emulateapj.sty, submitted to ApJ Letter
Recommended from our members
Targeting a heterologous protein to multiple plant organelles via rationally designed 5′ mRNA tags
Background: Plant bioengineers require simple genetic devices for predictable localization of heterologous proteins to multiple subcellular compartments. Results: We designed novel hybrid signal sequences for multiple-compartment localization and characterize their function when fused to GFP in Nicotiana benthamiana leaf tissue. TriTag-1 and TriTag-2 use alternative splicing to generate differentially localized GFP isoforms, localizing it to the chloroplasts, peroxisomes and cytosol. TriTag-1 shows a bias for targeting the chloroplast envelope while TriTag-2 preferentially targets the peroxisomes. TriTag-3 embeds a conserved peroxisomal targeting signal within a chloroplast transit peptide, directing GFP to the chloroplasts and peroxisomes. Conclusions: Our novel signal sequences can reduce the number of cloning steps and the amount of genetic material required to target a heterologous protein to multiple locations in plant cells. This work harnesses alternative splicing and signal embedding for engineering plants to express multi-functional proteins from single genetic constructs
- …