585 research outputs found

    Arbitary Pole-Placement in the LQ Control Paradigm

    Get PDF

    Processing Issues in Top-Down Approaches to Quantum Computer Development in Silicon

    Get PDF
    We describe critical processing issues in our development of single atom devices for solid-state quantum information processing. Integration of single 31P atoms with control gates and single electron transistor (SET) readout structures is addressed in a silicon-based approach. Results on electrical activation of low energy (15 keV) P implants in silicon show a strong dose effect on the electrical activation fractions. We identify dopant segregation to the SiO2/Si interface during rapid thermal annealing as a dopant loss channel and discuss measures of minimizing it. Silicon nanowire SET pairs with nanowire width of 10 to 20 nm are formed by electron beam lithography in SOI. We present first results from Coulomb blockade experiments and discuss issues of control gate integration for sub-40nm gate pitch levels

    Detection of low energy single ion impacts in micron scale transistors at room temperature

    Get PDF
    We report the detection of single ion impacts through monitoring of changes in the source-drain currents of field effect transistors (FET) at room temperature. Implant apertures are formed in the interlayer dielectrics and gate electrodes of planar, micro-scale FETs by electron beam assisted etching. FET currents increase due to the generation of positively charged defects in gate oxides when ions (121Sb12+, 14+, Xe6+; 50 to 70 keV) impinge into channel regions. Implant damage is repaired by rapid thermal annealing, enabling iterative cycles of device doping and electrical characterization for development of single atom devices and studies of dopant fluctuation effects

    Electrical activation and electron spin coherence of ultra low dose antimony implants in silicon

    Full text link
    We implanted ultra low doses (2x10^11 cm-2) of 121Sb ions into isotopically enriched 28Si and find high degrees of electrical activation and low levels of dopant diffusion after rapid thermal annealing. Pulsed Electron Spin Resonance shows that spin echo decay is sensitive to the dopant depths, and the interface quality. At 5.2 K, a spin decoherence time, T2, of 0.3 ms is found for profiles peaking 50 nm below a Si/SiO2 interface, increasing to 0.75 ms when the surface is passivated with hydrogen. These measurements provide benchmark data for the development of devices in which quantum information is encoded in donor electron spins

    Chemical Raman Enhancement of Organic Adsorbates on Metal Surfaces

    Get PDF
    Using a combination of first-principles theory and experiments, we provide a quantitative explanation for chemical contributions to surface-enhanced Raman spectroscopy for a well-studied organic molecule, benzene thiol, chemisorbed on planar Au(111) surfaces. With density functional theory calculations of the static Raman tensor, we demonstrate and quantify a strong mode-dependent modification of benzene thiol Raman spectra by Au substrates. Raman active modes with the largest enhancements result from stronger contributions from Au to their electron-vibron coupling, as quantified through a deformation potential, a well-defined property of each vibrational mode. A straightforward and general analysis is introduced that allows extraction of chemical enhancement from experiments for specific vibrational modes; measured values are in excellent agreement with our calculations.Comment: 5 pages, 4 figures and Supplementary material included as ancillary fil

    Stark shift and field ionization of arsenic donors in 28^{28}Si-SOI structures

    Full text link
    We develop an efficient back gate for silicon-on-insulator (SOI) devices operating at cryogenic temperatures, and measure the quadratic hyperfine Stark shift parameter of arsenic donors in isotopically purified 28^{28}Si-SOI layers using such structures. The back gate is implemented using MeV ion implantation through the SOI layer forming a metallic electrode in the handle wafer, enabling large and uniform electric fields up to ∼\sim 2 V/μ\mum to be applied across the SOI layer. Utilizing this structure we measure the Stark shift parameters of arsenic donors embedded in the 28^{28}Si SOI layer and find a contact hyperfine Stark parameter of ηa=−1.9±0.2×10−3μ\eta_a=-1.9\pm0.2\times10^{-3} \mum2^2/V2^2. We also demonstrate electric-field driven dopant ionization in the SOI device layer, measured by electron spin resonance.Comment: 5 pages, 3 figure
    • …
    corecore