5,332 research outputs found

    Stochastic Shell Models driven by a multiplicative fractional Brownian--motion

    Full text link
    We prove existence and uniqueness of the solution of a stochastic shell--model. The equation is driven by an infinite dimensional fractional Brownian--motion with Hurst--parameter H∈(1/2,1)H\in (1/2,1), and contains a non--trivial coefficient in front of the noise which satisfies special regularity conditions. The appearing stochastic integrals are defined in a fractional sense. First, we prove the existence and uniqueness of variational solutions to approximating equations driven by piecewise linear continuous noise, for which we are able to derive important uniform estimates in some functional spaces. Then, thanks to a compactness argument and these estimates, we prove that these variational solutions converge to a limit solution, which turns out to be the unique pathwise mild solution associated to the shell--model with fractional noise as driving process.Comment: 23 page

    Quantum Critical Exponents for a Disordered Three-Dimensional Weyl Node

    Get PDF
    Three-dimensional Dirac and Weyl semimetals exhibit a disorder-induced quantum phase transition between a semimetallic phase at weak disorder and a diffusive-metallic phase at strong disorder. Despite considerable effort, both numerically and analytically, the critical exponents ν\nu and zz of this phase transition are not known precisely. Here we report a numerical calculation of the critical exponent ν=1.47±0.03\nu=1.47\pm0.03 using a minimal single-Weyl node model and a finite-size scaling analysis of conductance. Our high-precision numerical value for ν\nu is incompatible with previous numerical studies on tight-binding models and with one- and two-loop calculations in an ϵ\epsilon-expansion scheme. We further obtain z=1.49±0.02z=1.49\pm0.02 from the scaling of the conductivity with chemical potential

    Pathwise solutions and attractors for retarded SPDEs with time smooth diffusion coefficients

    Get PDF
    In this paper we study the longtime dynamics of mild solutions to retarded stochastic evolution systems driven by a Hilbert-valued Brownian motion. As a preparation for this purpose we have to show the existence and uniqueness of a cocycle solution of such an equation. We do not assume that the noise is given in additive form or that it is a very simple multiplicative noise. However, we need some smoothing property for the coefficient in front of the noise. The main idea of this paper consists of expressing the stochastic integral in terms of non-stochastic integrals and the noisy path by using an integration by parts. This latter term causes that in a first moment only a local mild solution can be obtained, since in order to apply the Banach fixed point theorem it is crucial to have the H\"older norm of the noisy path to be sufficiently small. Later, by using appropriate stopping times, we shall derive the existence and uniqueness of a global mild solution. Furthermore, the asymptotic behavior is investigated by using the {\it Random Dynamical Systems theory}. In particular, we shall show that the global mild solution generates a random dynamical system that, under an appropriate smallness condition for the time lag, have associated a random attractor

    Cross-Correlation in the Auditory Coincidence Detectors of Owls

    Get PDF
    Interaural time difference (ITD) plays a central role in many auditory functions, most importantly in sound localization. The classic model for how ITD is computed was put forth by Jeffress (1948). One of the predictions of the Jeffress model is that the neurons that compute ITD should behave as cross-correlators. Whereas cross-correlation-like properties of the ITD-computing neurons have been reported, attempts to show that the shape of the ITD response function is determined by the spectral tuning of the neuron, a core prediction of cross-correlation, have been unsuccessful. Using reverse correlation analysis, we demonstrate in the barn owl that the relationship between the spectral tuning and the ITD response of the ITD-computing neurons is that predicted by cross-correlation. Moreover, we show that a model of coincidence detector responses derived from responses to binaurally uncorrelated noise is consistent with binaural interaction based on cross-correlation. These results are thus consistent with one of the key tenets of the Jeffress model. Our work sets forth both the methodology to answer whether cross-correlation describes coincidence detector responses and a demonstration that in the barn owl, the result is that expected by theory

    Stochastic lattice dynamical systems with fractional noise

    Get PDF
    This article is devoted to study stochastic lattice dynamical systems driven by a fractional Brownian motion with Hurst parameter H∈(1/2,1)H\in(1/2,1). First of all, we investigate the existence and uniqueness of pathwise mild solutions to such systems by the Young integration setting and prove that the solution generates a random dynamical system. Further, we analyze the exponential stability of the trivial solution
    • …
    corecore