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BJÖRN SCHMALFUSS¶

Abstract. This article studies stochastic lattice dynamical systems driven by a fractional Brow-
nian motion with Hurst parameter H ∈ (1/2, 1). First of all, we investigate the existence and
uniqueness of pathwise mild solutions to such systems by the Young integration setting and prove
that the solution generates a random dynamical system. Further, we analyze the exponential stability
of the trivial solution.

Key words. stochastic lattice equations, Hilbert-valued fractional Brownian motion, pathwise
solutions, exponential stability

AMS subject classifications. Primary, 60H15; Secondary, 37L55, 60G22, 37K45

DOI. 10.1137/16M1085504

1. Introduction. Lattice dynamical systems arise in a wide range of applica-
tions where the spatial structure has a discrete character, such as image processing
[14, 15, 16, 37], pattern recognition [12, 13], and chemical reaction theory [18, 29, 33].
In particular, lattice systems have been used in biological systems to describe the
dynamics of pulses in myelinated axons where the membrane is excitable only at
spatially discrete sites [5, 6, 30, 31, 38, 40]. Lattice systems have also been used
in fluid dynamics to describe the fluid turbulence in shell models (see, e.g., [7, 41]).
For some cases, lattice dynamical systems arise as discretization of partial differential
equations, while they can be interpreted as ordinary differential equations in Banach
spaces which are often simpler to analyze.

Random effects arise naturally in these models to take into account the uncer-
tainty (see, e.g., [26]). In this paper, we will consider the following stochastic lattice
dynamical system (SLDS) with a diffusive adjacent neighborhood interaction, a dis-
sipative nonlinear reaction term, and a fractional Brownian motion (fBm) at each
node:

(1.1) dui(t) = (ν(ui−1 − 2ui + ui+1)− λui + fi(ui)) dt+ σihi(ui)dB
H
i (t), i ∈ Z,

with initial condition ui(0), where Z denotes the integers set, ν and λ are positive
constants, ui, σi ∈ R, each BHi (t) is a one-dimensional two-sided fBm with Hurst
parameter H ∈ (1/2, 1), and fi and hi are smooth functions satisfying proper condi-
tions.
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1496 BESSAIH, GARRIDO-ATIENZA, HAN, AND SCHMALFUSS

On the other hand, the theory of random dynamical systems (RDSs) has been
developed by Arnold (see the monograph [1]) and his collaborators. Thanks to this
theory, we can study the stability behavior of solutions of differential equations con-
taining a general type of noise, in terms of random attractors and their dimensions,
random fixed points, random inertial, stable or unstable manifolds, and Lyapunov
exponents. Finite dimensional Itô equations with sufficiently smooth coefficients gen-
erate RDSs. This assertion follows from the flow property generated by the Itô equa-
tion, due to Kolmogorov’s theorem for a Hölder-continuous version of a random field
with finitely many parameters; see [32]. However this method fails for infinite di-
mensional stochastic equations, i.e., for systems with infinitely many parameters, and
in particular for SLDSs. To justify the flow property or the generation of an RDS
by an SLDS, a special transform technique has been used in the literature. Such a
transform reformulates an SLDS to a pathwise random differential equation, by using
Ornstein–Uhlenbeck processes. But this technique applies only to SLDSs with random

perturbations given by either an additive white noise σidB
1/2
i (t) or a simple multi-

plicative white noise σiuidB
1/2
i (t) at each node i ∈ Z (see [2, 3, 8, 9, 27, 28] and the

references therein). Nevertheless, there are some recent works where the generation
of an RDS is established for the solution of abstract stochastic differential equations
and stochastic evolution equations without transformation into random systems; see
[21, 22, 25], where H ∈ (1/2, 1), and [23, 24], where H ∈ (1/3, 1/2]. Note that in these
last two papers the case of a Brownian motion B1/2 is considered, giving a positive
answer to the rather open problem of the generation of RDSs for systems with general
diffusion noise terms.

Our main goal in this paper is to develop new techniques of stochastic analysis
to analyze the dynamics of SLDSs perturbed by general fBms with Hurst parameter
H ∈ (1/2, 1). In probability theory, an fBm is a centered Gauss process with a special
covariance function determined by the Hurst parameter H ∈ (0, 1). For H = 1/2,
B1/2 is the Brownian motion where the generalized temporal derivative is the white
noise. For H 6= 1/2, BH is not a semimartingale and, as a consequence, classical
techniques of stochastic analysis are not applicable. In particular, the fBm with a
Hurst parameter H ∈ (1/2, 1) enjoys the property of a long-range memory, which
roughly implies that the decay of stochastic dependence with respect to the past is
only subexponentially slow. This long-range dependence property of the fBm makes
it a realistic choice of noise for problems with long memory in the applied sciences.

In this paper, we prove the existence of a unique mild solution for system (1.1) and
analyze the exponential stability of the trivial solution. The existence of the unique
solution for a fixed initial condition relies on a fixed point argument, based on nice
estimates satisfied by the stochastic integral with an fBm as integrator. Further, we
prove that the trivial solution of the SLDS is exponentially stable, namely, assuming
that zero is a solution of the SLDS, then any other solution converges to the trivial
solution exponentially fast, provided that the corresponding initial data belongs to a
random neighborhood of zero. Since we do not transform the underlying SLDS into
a random equation, the norm of any nontrivial solution depends on the magnitude
of the norm of the noisy input. Therefore to obtain stability we develop a cut-off
argument, by which the functions appearing in the SLDS only need to be defined in
a small time interval [−δ, δ]. This brings up the idea of considering the composition
of the functions defined locally with a cut-off-like function depending on a random
variable R̂. With these compositions, we construct a sequence (un)n∈N such that
each element un is a solution of a modified SLDS on [0, 1] driven by a path of the
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STOCHASTIC LATTICE DYNAMICAL SYSTEMS WITH FBM 1497

fBm depending also on n. It is easily conceived that we will require un(0) = un−1(1).
The norm of each un depends on the magnitude of the corresponding driving noise
and a new random variable R related to the aforementioned R̂. By a suitable choice
of these random variables, we can apply a discrete Gronwall-like lemma to obtain
a subexponential estimate of every element of the sequence. Finally, temperedness
comes into play in order to ensure that (un)n∈N describes the solution of our SLDS
on the positive real line, and such a solution converges to the equilibrium given by
the trivial solution exponentially fast.

Recently, in [20] the authors have considered a stochastic differential equation
perturbed by a Hölder-continuous function with Hölder exponent greater than 1/2
and have investigated the exponential stability of the trivial solution. In this paper
we extend the study of the longtime stability with exponential decay to the case of
considering infinite dimensional dynamical systems. We also would like to announce
the forthcoming paper [19], where the authors show that the trivial solution is globally
attractive, by using a technique based on a suitable choice of stopping times that
depend on the noise signal, and that shall play the key role in establishing the stability
results.

The rest of this paper is organized as follows. In section 2 we provide necessary
preliminaries and some prior estimates to be used in the paper, in section 3 we study
the existence and uniqueness of pathwise solutions to (1.1), and in section 4 we in-
vestigate the stability of solutions to our SLDS. Section 5, the appendix, introduces
some lemmas that are used in section 4.

2. Preliminaries. Denote by

`2 :=

{
(ui)i∈Z :

∑
i∈Z

u2
i <∞

}

the separable Hilbert space of square summable sequences, equipped with the norm

‖u‖ :=

(∑
i∈Z

u2
i

) 1
2

, u = (ui)i∈Z ∈ `2,

and the inner product

〈u, v〉 =
∑
i∈Z

uivi, u = (ui)i∈Z , v = (vi)i∈Z ∈ `2.

Let us consider the infinite sequence (ei)i∈Z , where ei denotes the element in `2 having
1 at position i and 0 elsewhere. Then (ei)i∈Z forms a complete orthonormal basis
of `2.

Consider given T1 < T2. Let Cβ([T1, T2]; `2) be the Banach space of Hölder-
continuous functions with exponent 0 < β < 1 having values in `2, with norm

‖u‖β,ρ,T1,T2
= ‖u‖∞,ρ,T1,T2

+ |||u|||β,ρ,T1,T2
,

where ρ ≥ 0 and

‖u‖∞,ρ,T1,T2 = sup
s∈[T1,T2]

e−ρ(s−T1)‖u(s)‖,

|||u|||β,ρ,T1,T2
= sup
T1≤s<t≤T2

e−ρ(t−T1) ‖u(t)− u(s)‖
(t− s)β

.
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1498 BESSAIH, GARRIDO-ATIENZA, HAN, AND SCHMALFUSS

For ρ > 0 and ρ = 0 the corresponding norms are equivalent. We will suppress the
index ρ in these notations if ρ = 0, and we will suppress T1, T2 when T1 = 0 and
T2 = 1.

Since confusion is not possible, later we will use the notation ‖ · ‖β,ρ,T1,T2 to
express the norms of Cβ([T1, T2];R) and of Cβ([T1, T2];L2(`2)), as well.

In order to define integrals with Hölder-continuous integrators, we next define
Weyl fractional derivatives of functions on separable Hilbert spaces; see [39].

Definition 2.1. Let V1 and V2 be separable Hilbert spaces and let 0 < α < 1.
The Weyl fractional derivatives of general measurable functions Z : [s, t] → V1 and
ω : [s, t]→ V2, of order α and 1− α, respectively, are defined for s < r < t by

Dα
s+Z[r] =

1

Γ(1− α)

(
Z(r)

(r − s)α
+ α

∫ r

s

Z(r)− Z(q)

(r − q)1+α
dq

)
∈ V1,

D1−α
t− ωt−[r] =

(−1)α

Γ(α)

(
ω(r)− ω(t−)

(t− r)1−α + (1− α)

∫ t

r

ω(r)− ω(q)

(q − r)2−α dq

)
∈ V2,

where

ωt−(r) = ω(r)− ω(t−),

and ω(t−) is the left side limit of ω at t.

The next result shows that Weyl fractional derivatives are well-posed for Hölder-
continuous functions with suitable Hölder exponents. The proof follows easily and
therefore we omit it.

Lemma 2.2. Suppose that Z ∈ Cβ([T1, T2];V1), ω ∈ Cβ′
([T1, T2];V2), T1 ≤ s <

t ≤ T2 and that 1− β′ < α < β. Then Dα
s+Z and D1−α

t− ωt− are well-defined.

Let us assume for a while that V1 = V2 = R. Following Zähle [42] we can define
the fractional integral by∫ t

s

Zdω = (−1)α
∫ t

s

Dα
s+Z[r]D1−α

t− ωt−[r]dr.

We collect some properties of this integral; for the proof see [11] and [42].

Lemma 2.3. Let Z, Z1, Z2 ∈ Cβ([T1, T2];R), ω, ω1, ω2 ∈ Cβ
′
([T1, T2];R) such

that β + β′ > 1. Then there exists a positive constant Cβ,β′ such that for T1 ≤ s <
t ≤ T2 ∣∣∣∣ ∫ t

s

Zdω

∣∣∣∣ ≤ Cβ,β′(1 + (t− s)β)(t− s)β
′
‖Z‖β,T1,T2

|||ω|||β′,T1,T2
.

In addition, ∫ t

s

(Z1 + Z2)dω =

∫ t

s

Z1dω +

∫ t

s

Z2dω,∫ t

s

Zd(ω1 + ω2) =

∫ t

s

Zdω1 +

∫ t

s

Zdω2.

The integral is additive: for τ ∈ [s, t]∫ t

s

Zdω =

∫ τ

s

Zdω +

∫ t

τ

Zdω.
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STOCHASTIC LATTICE DYNAMICAL SYSTEMS WITH FBM 1499

Moreover, for any τ ∈ R

(2.1)

∫ t

s

Z(r)dω(r) =

∫ t−τ

s−τ
Z(r + τ)dθτω(r),

where θτω(·) = ω(· + τ) − ω(τ). Finally, let (ωn)n∈N be a sequence converging in
Cβ

′
([T1, T2];R) to ω. Then we have

lim
n→∞

∥∥∥∥∫ ·
T1

Zdωn −
∫ ·
T1

Zdω

∥∥∥∥
β,T1,T2

= 0.

Note that in the last expression, the integral with respect to ωn can be interpreted
in the Lebesgue sense.

We now extend the definition of a fractional integral in R to a fractional integral
in the separable Hilbert space `2, following the construction carried out recently in [11]
in a general separable Hilbert space. To do that, consider the separable Hilbert space
L2(`2) of Hilbert–Schmidt operators from `2 into `2, with the usual norm ‖ · ‖L2(`2)

defined by

‖z‖2L2(`2) =
∑
i∈Z
‖zei‖2,

for z ∈ L2(`2). Let Z ∈ Cβ([T1, T2];L2(`2)) and ω ∈ Cβ′
([T1, T2]; `2) with β+ β′ > 1.

We define the `2-valued integral for T1 ≤ s < t ≤ T2 as

(2.2)

∫ t

s

Zdω := (−1)α
∑
j∈Z

(∑
i∈Z

∫ t

s

Dα
s+〈ej , Z(·)ei〉[r]D1−α

t− 〈ei, ω(·)〉t−[r]dr

)
ej ,

for 1− β′ < α < β, whose norm fulfills∥∥∥∥∫ t

s

Zdω

∥∥∥∥ ≤ ∫ t

s

‖Dα
s+Z[r]‖L2(`2)‖D1−α

t− ωt−[r]‖dr.

Note that in (2.2) the integrals under the sums are one-dimensional fractional inte-
grals. In particular, in [11] the following result was proved.

Theorem 2.4. Suppose that Z ∈ Cβ([T1, T2];L2(`2)) and ω ∈ Cβ
′
([T1, T2]; `2),

where β + β′ > 1. Then there exists α ∈ (0, 1) such that 1 − β′ < α < β and the
integral (2.2) is well-defined. Moreover, all properties of Lemma 2.3 hold if we replace
the R-norm by the `2-norm.

We now consider estimates of the integral with respect to the Hölder norms de-
pending on ρ.

Lemma 2.5. Under the assumptions of Theorem 2.4, for β′ > β there exists a
constant c depending on T1, T2, β, β

′ such that for T1 ≤ s < t ≤ T2

(2.3) e−ρt
∥∥∥∥ ∫ t

s

Zdω

∥∥∥∥ ≤ ck(ρ)‖Z‖β,ρ,s,t |||ω|||β′,s,t (t− s)β ,

where k(ρ) defined by (2.4) below fulfills limρ→∞ k(ρ) = 0.

Proof. We only sketch the proof; for more details see [11].
First of all, it is not difficult to see that

‖D1−α
t− ωt−[r]‖ ≤ c |||ω|||β′,s,t (t− r)α+β′−1.
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1500 BESSAIH, GARRIDO-ATIENZA, HAN, AND SCHMALFUSS

Furthermore, since Z ∈ Cβ([T1, T2];L2(`2)),

e−ρt‖Dα
s+Z[r]‖L2(`2) ≤ ce−ρ(t−r)

(
e−ρr

‖Z(r)‖L2(`2)

(r − s)α
+

∫ r

s

e−ρr
‖Z(r)−Z(q)‖L2(`2)

(r−q)1+α
dq

)
≤ ce−ρ(t−r)(1 + (r − s)β)‖Z‖β,ρ,s,t(r − s)−α

≤ ce−ρ(t−r)‖Z‖β,ρ,s,t(r − s)−α.

Therefore,

e−ρt
∥∥∥∥∫ t

s

Zdω

∥∥∥∥ ≤ c |||ω|||β′,s,t ‖Z‖β,ρ,s,t
∫ t

s

e−ρ(t−r)(t− r)α+β′−1(r − s)−αdr

≤ c |||ω|||β′,s,t ‖Z‖β,ρ,s,t(t− s)
β

∫ t

s

e−ρ(t−r)(t− r)α+β′−β−1(r − s)−αdr

≤ ck(ρ) |||ω|||β′,s,t ‖Z‖β,ρ,s,t(t− s)
β ,

where

(2.4) k(ρ) = sup
0≤s<t≤T

∫ t

s

e−ρ(t−r)(t− r)α+β′−β−1(r − s)−αdr

is such that limρ→∞ k(ρ) = 0. The previous property can be stated in general as
follows: given T > 0, if a, b > −1 are such that a+ b+ 1 > 0, then

(2.5) k(ρ) := sup
0≤s<t≤T

∫ t

s

e−ρ(t−r)(r − s)a(t− r)bdr

is such that limρ→∞ k(ρ) = 0; see [11].

From now on k(ρ) will denote a function with the above behavior no matter the
exact values of the corresponding parameters a, b > −1 provided that a+ b+ 1 > 0.
Moreover, note that the constraints in Lemma 2.5 imply that β′ > 1/2.

As a particular case of Hölder-continuous integrator we are going to consider an
fBm with values in `2 and Hurst parameter H > 1/2. Consider a probability space
(Ω,F , P ). Let (BHi )i∈Z be an independent and identically distributed sequence of
fBm with the same Hurst parameter H > 1/2 over this probability space, that is,
each BHi is a centered Gauss process on R with covariance

R(s, t) =
1

2
(|s|2H + |t|2H − |t− s|2H) for s, t ∈ R.

Let Q be a linear operator on `2 such that Qei = σ2
i ei, σ = (σi)i∈Z . Hence Q is

a nonnegative and symmetric trace-class operator. A continuous `2-valued fBm BH

with covariance operator Q and Hurst parameter H is defined by

(2.6) BH(t) =
∑
i∈Z

(σiB
H
i (t))ei

having covariance

RQ(s, t) =
1

2
Q(|s|2H + |t|2H − |t− s|2H) for s, t ∈ R.D
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In fact, since BH is a Gauss process,

E
∥∥BH(t)−BH(s)

∥∥2
=
∑
i∈Z

σ2
iE(BHi (t)−BHi (s))2 =

∑
i∈Z

σ2
i |t−s|2H = ‖σ‖2|t−s|2H ,

E
∥∥BH(t)−BH(s)

∥∥2n ≤ cn|t−s|2Hn.

Therefore, applying Kunita [32, Theorem 1.4.1], BH(t) has a continuous version and
also a Hölder-continuous version with exponent β′ < H; see Bauer [4, Chapter 39].
Note that BH(0) = 0 almost surely.

Let C0(R; `2) be the space of continuous functions on R with values in `2 which
are zero at zero, equipped with the compact open topology. Consider the canonical
space for the fBm (C0(R; `2),B(C0(R; `2)), PH), where BH(ω) = ω and PH denotes
the measure of the fBm with Hurst parameter H. On C0(R; `2) we can introduce the
Wiener shift θ given by the measurable flow

θ : (R× C0(R, `2),B(R)⊗ B(C0(R, `2)))→ (C0(R, `2),B(C0(R, `2)))

such that

(2.7) θ(t, ω)(·) = θtω(·) = ω(·+ t)− ω(t).

By Mishura [35, p. 8], we have that θt leaves PH invariant. In addition t → θtω is
continuous. Furthermore, thanks to Bauer [4, Chapter 39], we can also conclude that

the set Cβ
′

0 (R; `2) of continuous functions which have a finite β′-Hölder-seminorm on
any compact interval and which are zero at zero has PH -measure one for β′ < H.
This set is θ-invariant.

3. Lattice equations driven by fractional Brownian motions. Given
strictly positive constants ν and λ, we consider the following SLDS with a diffu-
sive adjacent neighborhood interaction, a dissipative nonlinear reaction term, and an
fBm BHi at each node:

(3.1) dui(t) = (ν(ui−1 − 2ui + ui+1)− λui + fi(ui)) dt+ σihi(ui)dB
H
i (t), i ∈ Z.

Here fi and hi are suitable regular functions; see below. We want to rewrite this
system giving it the interpretation of a stochastic evolution equation in `2. To this
end, let A be the linear bounded operator from `2 to `2 defined by Au = ((Au)i)i∈Z ,
where

(Au)i = −ν(ui−1 − 2ui + ui+1), i ∈ Z.

Notice that A = BB∗ = B∗B, where

(Bu)i =
√
ν(ui+1 − ui), (B∗u)i =

√
ν(ui−1 − ui)

and hence

〈Au, u〉 ≥ 0 ∀u ∈ `2.

Let us consider the linear bounded operator Aλ : `2 → `2 given by

(3.2) Aλu = Au+ λu.
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1502 BESSAIH, GARRIDO-ATIENZA, HAN, AND SCHMALFUSS

Then

〈Aλu, u〉 ≥ λ‖u‖2 ∀u ∈ `2;

hence −Aλ is a negative defined and bounded operator, and thus it generates a uni-
formly continuous (semi)group Sλ := e−Aλt on `2, for which the following estimates
hold true.

Lemma 3.1. The uniformly continuous semigroup Sλ is also exponentially stable,
that is, for t ≥ 0 we have

‖Sλ(t)‖L(`2) ≤ e−λt.(3.3)

In addition, for 0 ≤ s ≤ t

‖Sλ(t− s)− id‖L(`2) ≤ ‖Aλ‖(t− s),
(3.4)

‖Sλ(t)− Sλ(s)‖L(`2) ≤ ‖Aλ‖(t− s)e−λs,

where, for the sake of presentation, ‖Aλ‖ represents ‖Aλ‖L(`2) (L(`2) denotes the
space of linear continuous operators from `2 into itself).

The proof of the first property is a direct consequence of the energy inequality,
while the two last estimates follow easily by the mean value theorem. As straightfor-
ward results, we also obtain that for 0 < s < t,

|||Sλ(t− ·)|||β,0,t = sup
0≤r1<r2≤t

‖Sλ(t− r2)− Sλ(t− r1)‖L(`2)

(r2 − r1)β
≤ ‖Aλ‖t1−β ,(3.5)

and

|||Sλ(t− ·)− Sλ(s− ·)|||β,0,s

= sup
0≤r1<r2≤s

‖(Sλ(t− s)− id)(Sλ(s− r2)− Sλ(s− r1))‖L(`2)

(r2 − r1)β
(3.6)

≤ ‖Aλ‖2(t− s)s1−β .

Now we formulate the assumptions for the functions fi and gi. Indeed, for the
sake of completeness, we present now all the standing assumptions needed in this
section:

(A1) The process ω is a (canonical) continuous fBm with values in `2, with covari-
ance Q, and with Hurst parameter H given by (2.6). In particular, we have
parameters 1

2 < β < β′ < H and 1− β′ < α < β.
(A2) Let Aλ be the operator defined by (3.2) and Sλ be the exponentially stable

and uniformly continuous semigroup generated by −Aλ.
(A3) fi ∈ C1(R,R),

∑
i∈Z fi(0)2 < ∞, and there exists a constant Df ≥ 0 such

that

|f ′i(ζ)| ≤ Df , ζ ∈ R, i ∈ Z.

(A4) hi ∈ C2(R,R),
∑
i∈Z hi(0)2 <∞, and there exist constants Dh, Mh ≥ 0 such

that

|h′i(ζ)| ≤ Dh, |h′′i (ζ)| ≤Mh, ζ ∈ R, i ∈ Z.
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Let u = (ui)i∈Z be an element of `2. Then (A3) allows us to define the operator

(3.7) f : `2 → `2, f(u) := (fi(ui))i∈Z .

Thanks to (A4) we can also define the operator h(u) ∈ L(`2) by

(3.8) h(u)v = (hi(ui)vi)i∈Z ∈ `2.

That f and h are well-posed is proved in the next result, as well as their main
regularity properties.

Lemma 3.2. (a) The operator f : `2 → `2 given by (3.7) is well-defined and is
Lipschitz continuous with Lipschitz constant Df .

(b) The operator `2 3 u 7→ h(u) ∈ L2(`2) given by (3.8) is well-defined and
continuously differentiable. Moreover, both h and its first derivative Dh are Lipschitz-
continuous with Lipschitz constants Dh and Mh, respectively. Furthermore, for u, v,
w, z ∈ `2 the following property holds true:

‖h(u)− h(v)− (h(w)− h(z))‖L2(`2) ≤
√

2Dh‖u− v − (w − z)‖
(3.9)

+ 2Mh‖u− w‖(‖u− v‖+ ‖w − z‖).

Proof. (a) Thanks to the definition of f , for u = (ui)i∈Z ∈ `2 we have

‖f(u)‖2 ≤ 2
∑
i∈Z

fi(0)2 + 2D2
f‖u‖2 <∞,

hence it is well-posed. Furthermore, f is Lipschitz-continuous: for v = (vi)i∈Z ∈ `2
we obtain

‖f(u)− f(v)‖2 =
∑
i∈Z
|fi(ui)− fi(vi)|2 ≤ D2

f

∑
i∈Z
|ui − vi|2 = D2

f‖u− v‖2.

(b) The operator h is well-defined as a Hilbert–Schmidt operator, since

‖h(u)‖2L2(`2) =
∑
i∈Z
‖h(u)ei‖2 =

∑
i,j∈Z

|(h(u)ei)j |2 =
∑
i∈Z
|hi(ui)|2

≤ 2
∑
i∈Z

hi(0)2 + 2D2
h‖u‖2 <∞.

Moreover, in a similar way to how we have proceeded for the operator f , h is Lipschitz-
continuous:

‖h(u)− h(v)‖2L2(`2) ≤ D
2
h‖u− v‖2 foru, v ∈ `2.

Regarding the derivative, we have that Dh : `2 7→ L(`2, L2(`2)) is defined for u, v, w ∈
`2 by

(Dh(u)v)w = (h′i(ui)viwi)i∈Z .

In fact,

‖h(u+ v) − h(u)−Dh(u)v‖2L2(`2) =
∑
i∈Z
|hi(ui + vi)− hi(ui)− h′i(ui)vi|2

≤1

4

∑
i∈Z
|h′′i (ũi)|2v4

i ≤
1

4
M2
h

∑
i∈Z

v4
i ≤

1

4
M2
h

(∑
i∈Z

v2
i

)2

≤ 1

4
M2
h‖v‖4,
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1504 BESSAIH, GARRIDO-ATIENZA, HAN, AND SCHMALFUSS

where ũi is an intermediate element between ui and ui+vi. This derivative is bounded
in the space L(`2, L2(`2)) since

‖Dh(u)‖2L(`2,L2(`2)) = sup
‖z‖=1

∑
i∈Z
|h′i(ui)zi|2 ≤ D2

h,

and furthermore Dh is Lipschitz-continuous:

‖Dh(u)−Dh(v)‖2L(`2,L2(`2)) = sup
‖z‖=1

∑
i∈Z
|h′i(ui)zi − h′i(vi)zi|2

≤ sup
‖z‖=1

∑
i∈Z
|h′′i (ũi)(ui − vi)zi|2 ≤M2

h‖u− v‖2.

Finally, property (3.9) follows by Nualart and Răşcanu [36, Lemma 7.1]. Indeed, by
virtue of the Lispchitz continuity of any hi and h′i we obtain

‖h(u)− h(v)− (h(w)− h(z))‖2L2(`2) =
∑
i∈Z
|hi(ui)− hi(vi)− (hi(wi)− hi(zi))|2

≤
∑
i∈Z

(2D2
h|ui − vi − (wi − zi)|2 + 4M2

h |ui − wi|2(|ui − vi|2 + |wi − zi|2))

≤ 2D2
h‖u− v − (w − z)‖2 + 4M2

h‖u− w‖2(‖u− v‖2 + ‖w − z‖2).

Hence, we can reformulate the system of equations given by (3.1) as the following
evolution equation with values in `2:

du(t) = (−Aλu(t) + f(u(t)))dt+ h(u(t))dω(t),

where Aλ has been defined by (3.2), and f and h by (3.7) and (3.8), respectively.
The sequence u(t) = (ui(t))i∈Z is such that ui fulfills (3.1) for each i ∈ Z. Since our
stability considerations will be based on the exponential stability of Sλ, we look for
a mild solution of the above equation, namely, we look for an u(t) = (ui(t))i∈Z ∈ `2
solution of the operator equation

(3.10) u(t) = Sλ(t)x+

∫ t

0

Sλ(t− r)f(u(r))dr +

∫ t

0

Sλ(t− r)h(u(r))dω(r),

where the initial condition x ∈ `2. The last integral has to be interpreted as we have
explained in section 2.

Next we would like to apply a fixed point argument to ensure the existence and
uniqueness of a solution to (3.10). We first present estimates of the stochastic integral
appearing on the right-hand side of (3.10).

Lemma 3.3. Under assumptions (A1), (A2), and (A4), the stochastic integral
satisfies

(3.11)

∥∥∥∥∫ ·
0

Sλ(· − r)h(u(r))dω(r)

∥∥∥∥
β,ρ,0,T

≤ ck(ρ) |||ω|||β′,0,T ‖h(u(·))‖β,ρ,0,T ,

where c may depend on β, β′, T , ‖Aλ‖, and k(ρ) is given by (2.5). Furthermore,∥∥∥∥∫ ·
0

Sλ(· − r)h(u(r))dω(r)

∥∥∥∥
∞,0,T

≤ c(1 + ‖Aλ‖) |||ω|||β′,0,T ‖h(u(·))‖β,0,T ,(3.12) ∣∣∣∣∣∣∣∣∣∣∣∣∫ ·
0

Sλ(· − r)h(u(r))dω(r)

∣∣∣∣∣∣∣∣∣∣∣∣
β,0,T

≤ c(1 + ‖Aλ‖)2 |||ω|||β′,0,T ‖h(u(·))‖β,0,T ,(3.13)

where in the last two inequalities c may depend on β, β′, and T .
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Proof. Thanks to the additivity of the stochastic integral we can consider the
following splitting:∫ t

0

Sλ(t− r)h(u(r))dω(r)−
∫ s

0

Sλ(s− r)h(u(r))dω(r)

=

∫ t

s

Sλ(t− r)h(u(r))dω(r) +

∫ s

0

(Sλ(t− r)− Sλ(s− r))h(u(r))dω(r).

(3.14)

From (2.3), for 0 ≤ s < t ≤ T we obtain

e−ρt

∥∥∥∥ ∫ ts Sλ(t− r)h(u(r))dω(r)

∥∥∥∥
(t− s)β

≤ ck(ρ) |||ω|||β′,0,T ‖Sλ(t− ·)h(u(·))‖β,ρ,0,t,

e−ρt

∥∥∥∥ ∫ s0 (Sλ(t− r)− Sλ(s− r))h(u(r))dω(r)

∥∥∥∥
(t− s)β

≤ ck(ρ) |||ω|||β′,0,T

sβ

(t− s)β
× ‖(Sλ(t− ·)− Sλ(s− ·))h(u(·))‖β,ρ,0,s.

Furthermore, since for any two β-Hölder-continuous functions l, g we easily obtain

(3.15) ‖lg‖β,ρ,0,t ≤ ‖l‖∞,0,t‖g‖β,ρ,0,t + ‖g‖∞,ρ,0,t |||l|||β,0,t ,

by (3.3) and (3.5) we derive

‖Sλ(t− ·)h(u(·))‖β,ρ,0,t
≤ ‖Sλ(t− ·)‖∞,0,t‖h(u(·))‖β,ρ,0,t + |||Sλ(t− ·)|||β,0,t ‖h(u(·))‖∞,ρ,0,t
≤ ‖h(u(·))‖β,ρ,0,t+‖Aλ‖t1−β‖h(u(·))‖∞,ρ,0,t,

and by (3.4) and (3.6)

‖(Sλ(t− ·)− Sλ(s− ·))h(u(·))‖β,ρ,0,s
≤ (t− s)‖Aλ‖‖h(u(·))‖β,ρ,0,s + ‖Aλ‖2(t− s)s1−β‖h(u(·))‖∞,ρ,0,s.

Hence ∣∣∣∣∣∣∣∣∣∣∣∣∫ ·
0

Sλ(· − r)h(u(r))dω(r)

∣∣∣∣∣∣∣∣∣∣∣∣
β,ρ,0,T

≤ ck(ρ) |||ω|||β′,0,T ‖h(u(·))‖β,ρ,0,T .

Taking into account the way in which we have estimated the first term on the right-
hand side of (3.14), we immediately obtain∥∥∥∥∫ ·

0

Sλ(· − r)h(u(r))dω(r)

∥∥∥∥
∞,ρ,0,T

≤ ck(ρ) |||ω|||β′,0,T ‖h(u(·))‖β,ρ,0,T ,

so the proof of (3.11) is complete.
Notice that using the β-norm, (3.15) reads as follows

‖lg‖β,0,t ≤ ‖l‖∞,0,t‖g‖β,0,t + ‖g‖∞,0,t |||l|||β,0,t ,

hence (3.12) is an immediate consequence of (3.3) and (3.5). In order to prove (3.13)
we can follow the same steps as at the beginning of this proof.
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1506 BESSAIH, GARRIDO-ATIENZA, HAN, AND SCHMALFUSS

Now we can establish the existence of a unique mild solution to our SLDS.

Theorem 3.4. Under assumptions (A1)–(A4), for every T > 0 and x ∈ `2 the
problem (3.10) has a unique solution u(·) = u(·, ω, x) ∈ Cβ([0, T ]; `2).

Proof. We will show that the operator

Tx,ω(u)[t] = Sλ(t)x+

∫ t

0

Sλ(t− r)f(u(r))dr +

∫ t

0

Sλ(t− r)h(u(r))dω(r),

where t ∈ [0, T ], has a unique fixed point in Cβ([0, T ]; `2) by applying the Banach
fixed point theorem. To this end, first of all we show that there exists a closed centered
ball with respect to the norm ‖ · ‖β,ρ,0,T which is mapped by Tx,ω into itself. For the
first term, in virtue of (3.4),

‖Sλ(·)x‖β,ρ,0,T ≤ (1 + ‖Aλ‖T 1−β)‖x‖.

For the Lebesgue integral of Tx,ω we obtain∥∥∥∥∫ ·
0

Sλ(· − r)f(u(r))dr

∥∥∥∥
β,ρ,0,T

≤ sup
t∈[0,T ]

e−ρt
∥∥∥∥∫ t

0

Sλ(t− r)f(u(r))dr

∥∥∥∥
+ sup

0≤s<t≤T
e−ρt

∥∥∥∥ ∫ ts Sλ(t− r)f(u(r))dr

∥∥∥∥
(t− s)β

(3.16)

+ sup
0≤s<t≤T

e−ρt

∥∥∥∥ ∫ s0 (Sλ(t− r)− Sλ(s− r))f(u(r))dr

∥∥∥∥
(t− s)β

≤ k̃(ρ)‖f(u(·))‖∞,ρ,0,T ,

where limρ→∞ k̃(ρ) = 0. In fact, we are going to show that

k̃(ρ) =

(
1

ρ
+ cβ

1

ρ1−β +
1

ρ
T 1−β‖Aλ‖

)
,(3.17)

where cβ is a positive constant depending on β. Note that the first term on the
right-hand side of (3.16) is estimated by

sup
t∈[0,T ]

∫ t

0

e−ρ(t−r)dr‖f(u(·))‖∞,ρ,0,T ≤
1

ρ
‖f(u(·))‖∞,ρ,0,T .

For the second expression,∫ t
s
e−ρ(t−r)dr

(t− s)β
≤ 1

ρ1−β
1− e−ρ(t−s)

ρβ(t− s)β
≤ 1

ρ1−β sup
x>0

1− e−x

xβ
=:

1

ρ1−β cβ .

The estimate of the last term on the right-hand side of (3.16) follows by (3.4), since
Sλ(t− r)− Sλ(s− r) = (Sλ(t− s)− Id)Sλ(s− r). On the other hand,

‖f(u(·))‖∞,ρ,0,T ≤ sup
0≤t≤T

e−ρt‖f(x)‖+ sup
0≤t≤T

e−ρt‖f(u(t))− f(x)‖

≤ ‖f(x)‖+DfT
β‖u‖β,ρ,0,T ,
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hence ∥∥∥∥∫ ·
0

Sλ(· − r)f(u(r))dr

∥∥∥∥
β,ρ,0,T

≤ k̂(ρ)(1 + ‖u‖β,ρ,0,T ),

where now k̂(ρ) = max{‖f(x)‖, DfT
β}k̃(ρ), with k̃(ρ) defined by (3.17).

On the other hand,

‖h(u(·))‖β,ρ,0,t = sup
r∈[0,t]

e−ρr‖h(u(r))‖L2(`2)

+ sup
0≤q<r≤t

e−ρr‖h(u(r))− h(u(q))‖L2(`2)

(r − q)β
(3.18)

≤ ‖h(x)‖+Dh(1 + T β)‖u‖β,ρ,0,T ;

hence, on account of (3.11) we obtain∥∥∥∥∫ ·
0

Sλ(· − r)h(u(r))dω(r)

∥∥∥∥
β,ρ,0,T

≤ ck(ρ) |||ω|||β′,0,T (1 + ‖u‖β,ρ,0,T ),

where c may depend on β, β′, T , ‖Aλ‖, ‖h(x)‖, and Dh. In conclusion, we have
obtained

‖Tx,ω(u)‖β,ρ,0,T ≤ (1 + ‖Aλ‖T 1−β)‖x‖+K(ρ)(1 + |||ω|||β′,0,T )(1 + ‖u‖β,ρ,0,T ),

where limρ→∞K(ρ) = 0. Note that K(ρ) may also depend on the parameters related
to f and h, the initial condition x, ‖Aλ‖, and T . Taking a sufficiently large ρ such
that K(ρ)(1 + |||ω|||β′,0,T ) ≤ 1/2, the ball

B = B(0, R(x, ρ)) = {u ∈ Cβ([0, T ]; `2) : ‖u‖β,ρ,0,T ≤ R}

with
R = R(x, ρ) = 2(1 + ‖Aλ‖T 1−β)‖x‖+ 1

is mapped into itself since

‖Tx,ω(u)‖β,ρ,0,T ≤ (1 + ‖Aλ‖T 1−β)‖x‖+
1

2
(1 +R) = R.

We now derive the contraction condition for the operator Tx,ω with respect to the
norm ‖ · ‖β,ρ̄,0,T , where the ρ̄ may differ from the ρ considered above. However, since
all these norms are equivalent for different ρ ≥ 0, the ball B remains a complete space
with respect to any ‖ · ‖β,ρ̄,0,T .

Similar to above, for the Lebesgue integral we obtain the estimate

‖f(u1(·))− f(u2(·))‖β,ρ̄,0,T ≤ k̃(ρ̄)Df‖u1 − u2‖β,ρ̄,0,T ,

where k̃(ρ) is defined by (3.17) replacing ρ by ρ̄.
Regarding the stochastic integral, the difference with respect to the previous

computations is that now in (3.18) the operator h(u(·)) has to be replaced by h(u1(·))−
h(u2(·)). In particular, from (3.9) we easily derive

‖h(u1(·))− h(u2(·))‖β,ρ̄,0,T ≤ Dh(‖u1 − u2‖∞,ρ̄,0,T +
√

2 |||u1 − u2|||β,ρ̄,0,T )

+ 2Mh(|||u1|||β,0,T + |||u2|||β,0,T )‖u1 − u2‖∞,ρ̄,0,T .
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1508 BESSAIH, GARRIDO-ATIENZA, HAN, AND SCHMALFUSS

Since |||u1|||β,0,T ≤ eρTR(x, ρ) (and the same inequality holds for u2), then

‖Tx,ω(u1)− Tx,ω(u2)‖β,ρ̄,0,T ≤ K(ρ̄)(1 + 2eρTR(x, ρ))

× ‖u1 − u2‖β,ρ̄,0,T ,
where again limρ̄→∞K(ρ̄) = 0.. It suffices then to choose ρ̄ sufficiently large so that

‖Tx,ω(u1)− Tx,ω(u2)‖β,ρ̄,0,T ≤
1

2
‖u1 − u2‖β,ρ̄,0,T ,

which implies the contraction property of the map Tx,ω. Hence, (3.10) has a unique
solution u ∈ B. And by similar arguments there cannot be another solution outside
the ball B.

We finish this section by proving that the solution of (3.10) generates an RDS.

Definition 3.5. Consider a probability space (Ω,F , P ). The quadruple (Ω,F , P, θ)
is called a metric dynamical system if the measurable mapping

θ : (R× Ω,B(R)⊗F)→ (Ω,F)

is a flow, that is,

θt1 ◦ θt2 = θt1θt2 = θt1+t2 , t1, t2 ∈ R; θ0 = idΩ,

and the measure P is invariant and ergodic with respect to θ.

Definition 3.6. An RDS ϕ over the metric dynamical system (Ω,F , P, θ) is a(
B(R+)⊗F ⊗B(`2),B(`2)

)
-measurable mapping such that the cocycle property holds

ϕ(t+ τ, ω, x) = ϕ(t, θτω, ϕ(τ, ω, x)), ϕ(0, ω, x) = x,

for all t ≥ τ ∈ R+, x ∈ `2, and ω ∈ Ω.

The metric dynamical system is the model for the noise, in our case the fBm.
More precisely, we take the quadruple (Ω,F , P, θ) = (C0(R; `2),B(C0(R; `2)), PH , θ),
where θ is given by the Wiener flow introduced in (2.7).

Theorem 3.7. The solution of (3.10) generates an RDS

ϕ : R+ × Ω × `2 7→ `2

given by ϕ(t, ω, x) = u(t, ω, x) = u(t), where u the unique solution to (3.10) corre-
sponding to ω and initial condition x.

Proof. We only sketch the main ideas of the proof.
The cocycle property is a consequence in particular of the additivity of the stochas-

tic integral as well as the behavior of the stochastic integral when performing a change
of variable given by (2.1). More specifically,

ϕ(t+ τ, ω, x) = Sλ(t+ τ)x+

∫ t+τ

0

Sλ(t+ τ − r)f(u(r))dr

+

∫ t+τ

0

Sλ(t+ τ − r)h(u(r))dω(r)

= Sλ(t)

(
Sλ(τ)x+

∫ τ

0

Sλ(τ−r)f(u(r))dr+

∫ τ

0

Sλ(τ−r)h(u(r))dω(r)

)
+

∫ t+τ

τ

Sλ(t+ τ − r)f(u(r))dr +

∫ t+τ

τ

Sλ(t+ τ − r)h(u(r))dω(r)

= S(t)u(τ)+

∫ t

0

Sλ(t− r)f(u(r + τ))dr+

∫ t

0

Sλ(t−r)h(u(r+τ))dθτω(r).
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Denoting y(·) = u(·+ τ) the previous inequality reads

ϕ(t+ τ, ω, x) = Sλ(t)y(0) +

∫ t

0

Sλ(t− r)f(y(r))dr +

∫ t

0

Sλ(t− r)h(y(r))dθτω(r)

and the right-hand side of the last equality is equal to ϕ(t, θτω, ϕ(τ, ω, x)).
The measurability of the mapping ϕ follows due to its continuity with respect

to ω (that implies measurability with respect to ω), also due to its continuity with
respect to (t, x) for a fixed ω and the separability of `2; see Lemma III.14 in Castaing
and Valadier [10].

4. Exponential stability of the trivial solution. The purpose of this section
is to show that the trivial solution of (3.1) is exponential stable. Therefore, we start
assuming that zero is an equilibrium of the SLDS.

Since we work directly with our SLDS without transforming it into a random
equation, the norm of the solution depends on how large the norm of the noisy input
is, and therefore we will consider a cut-off strategy, in such a way that we will deal
with a modified lattice system depending on a random variable. Further, that random
variable can be chosen in a suitable way such that it turns out that it is possible to
apply a Gronwall-like lemma, which together with the temperedness of the involved
random variables will imply that the solution of the modified system coincides with
that of the original lattice system, that converges to the trivial solution exponentially
fast.

Definition 4.1. The trivial solution of the SLDS is said to be exponential stable
with rate µ > 0 if for almost every ω there exists a random variable α(ω) > 0 and a
random neighborhood U(ω) of zero such that for all ω ∈ Ω and t ∈ R+

sup
x∈U(ω)

‖ϕ(t, ω, x)‖ ≤ α(ω)e−µt,

where ϕ : R+ × Ω× `2 → `2 is the cocycle mapping given in Theorem 3.7.

For the study of exponential stability of systems driven by continuous semimartin-
gales, see the monograph [34]. In the spirit of working with the rich theory of RDS,
here we have adapted the definition of exponential stability to the RDS setting.

We would like to prove that the trivial solution of the SLDS is exponentially stable
with rate µ < λ. In order to do that, first of all we need to introduce the key concept
of temperedness. A random variable R ∈ (0,∞) is called tempered from above with
respect to the metric dynamical system (Ω,F , P, θ) if

lim sup
t→±∞

log+R(θtω)

t
= 0 with probability 1.(4.1)

Therefore, temperedness from above describes the subexponential growth of a stochas-
tic stationary process (t, ω) 7→ R(θtω). R is called tempered from below if R−1 is
tempered from above. In particular, if the random variable R is tempered from below
and t 7→ R(θtω) is continuous, then for any ε > 0 there exists a random variable
Cε(ω) > 0 such that

R(θtω) ≥ Cε(ω)e−ε|t| with probability 1.

A sufficient condition for temperedness with respect to an ergodic metric dynamical
system is that

E sup
t∈[0,1]

log+R(θtω) <∞;
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1510 BESSAIH, GARRIDO-ATIENZA, HAN, AND SCHMALFUSS

see Arnold [1, p. 165]. Hence, by Kunita [32, Theorem 1.4.1] we obtain that R(ω) =
|||ω|||β′,0,1 is tempered from above because log+ r ≤ r for r > 0 and trivially supt∈[0,1]

|||θtω|||β,0,1 ≤ |||ω|||β,0,2. Furthermore, the set of all ω satisfying (4.1) is invariant with
respect to the flow θ.

We now introduce two more assumptions, which in particular imply that (3.1)
has the unique trivial solution.

In what follows, for δ > 0 we also make these assumptions:
(A3′) Each fi is defined on [−δ, δ]. In addition to the assumption (A3), we as-

sume that fi(0) = f ′i(0) = 0, fi ∈ C2([−δ, δ]), R) and there exists a positive
constant Mf such that

|f ′′i (ζ)| ≤Mf , ζ ∈ [−δ, δ], i ∈ Z.

(A4′) Let each hi be defined on [−δ, δ]. In addition to the assumption (A4), we
assume that hi(0) = h′i(0) = 0.

The operators f , h then are defined on B̄`2(0, δ). In particular, from (A3′) we derive
that f is Fréchet differentiable and its derivative Df : `2 7→ L(`2) is continuous.
Indeed, for u, v ∈ `2 we obtain

‖f(u+ v)− f(u)−Df(u)v‖2 ≤ 1

4
M2
f ‖v‖4

and
‖Df(u)−Df(v)‖2L(`2) = sup

‖z‖=1

‖Df(u)z −Df(v)z‖2 ≤M2
f ‖u− v‖2.

Furthermore, these assumptions ensure that (3.1) has the unique trivial solution.
We introduce χ to be the cut-off function

χ : `2 → B̄`2(0, 1), χ(u) =

{
u : ‖u‖ ≤ 1

2 ,
0 : ‖u‖ ≥ 1

such that the norm of χ(u) is bounded by 1. We also assume that χ is twice con-
tinuously differentiable with bounded derivatives Dχ and D2χ. Bounds of these
derivatives are denoted by LDχ, LD2χ . Now for u ∈ `2 and some 0 < R̂ ≤ δ we define

χR̂(u) = R̂χ(u/R̂) ∈ B̄`2(0, R̂).

Then it is easy to see that the first derivative DχR̂ of χR̂ is bounded by LDχ, while

the second derivative D2χR̂ is bounded by
LD2χ

R̂
.

We now modify the operators f, h by considering their compositions with the
above cut-off function. In that way, we set fR̂ := f ◦ χR̂ : `2 → `2 and hR̂ := h ◦ χR̂ :
`2 → L2(`2), consider (3.10) replacing f by fR̂ and h by hR̂, and the sequence (un)n∈N
defined by

un(t) = Sλ(t)un(0) +

∫ t

0

Sλ(t− r)fR̂(θnω)(u
n(r))dr

+

∫ t

0

Sλ(t− r)hR̂(θnω)(u
n(r))dθnω, t ∈ [0, 1],

(4.2)

where u0(0) = x and un(0) = un−1(1). Since the modified coefficients satisfy the
assumptions in Theorem 3.4 for any n ∈ N , then there exists a unique solution un to
(4.2) on [0, 1].

Next we establish a result which will be one of the keys in order to obtain the
exponential stability of the trivial solution.
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Lemma 4.2. For every R > 0 there exists a positive R̂ ≤ δ such that for all
u, z ∈ `2

‖fR̂(u)‖ ≤ RLDχ‖u‖,(4.3)

‖hR̂(u)‖L2(`2) ≤ RLDχ‖u‖,(4.4)

‖hR̂(u)− hR̂(z)‖L2(`2) ≤ RLDχ‖u− z‖.(4.5)

Proof. By Df(0) = 0 and the continuity of Df , for any R > 0 we can choose an
R̂ ≤ δ such that

sup
‖v‖≤R̂

‖Df(v)‖L(`2) ≤ R.

Then for u ∈ `2, since f(0) = 0 from the mean value theorem we have

‖fR̂(u)‖ ≤ sup
z∈`2
‖D(f(χR̂(z)))‖L(`2)‖u‖ ≤ sup

‖v‖≤R̂
‖Df(v)‖L(`2) sup

z∈`2
‖DχR̂(z)‖L(`2)‖u‖

≤ RLDχ‖u‖,

and therefore (4.3) is shown. Following the same steps we prove (4.4).
Finally, by the regularity of Dh,

‖hR̂(u)− hR̂(z)‖L2(`2) ≤ sup
‖v‖≤R̂

‖Dh(v)‖L(`2,L2(`2))‖χR̂(u)− χR̂(z)‖

≤ LDχ sup
‖v‖≤R̂

‖Dh(v)‖L(`2,L2(`2))‖u− z‖ ≤ RLDχ‖u− z‖.

For n ∈ Z+, we set

(4.6) u(t) = un(t− n) if t ∈ [n, n+ 1].

Let us emphasize that the previous function u is defined on the whole positive real
line and is Hölder continuous on any interval [n, n + 1]. However, we cannot claim
yet that u defined by (4.6) is our mild solution obtained in Theorem 3.4. The reason
is that any un is a solution of a modified lattice problem depending on the cut-off
function χR̂ and driven by a path θnω. But as we will show below, using the additivity
of the integrals, the estimates of the functions fR̂ and hR̂ given in Lemma 4.2, and

a suitable choice of the random variables R and R̂, we will end up proving that not
only u given by (4.6) is the solution of our original stochastic lattice system (3.10),
but also that it converges to the trivial solution exponential fast with a certain decay
rate µ.

In order to prove the previous assertions, we first express u given by (4.6) for
t ∈ [n, n+ 1] as follows:

(4.7)

u(t) = Sλ(t− n)u(n)+

∫ t

n

Sλ(t− r)fR̂(θnω)(u(r))dr +

∫ t

n

Sλ(t−r)hR̂(θnω)(u(r))dω(r)

= Sλ(t)x+

n−1∑
j=0

Sλ(t− j − 1)

(∫ j+1

j

Sλ(j + 1− r)fR̂(θjω)(u(r))dr

+

∫ j+1

j

Sλ(j + 1− r)hR̂(θjω)(u(r))dω(r)
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+

∫ t

n

Sλ(t− r)fR̂(θnω)(u(r))dr +

∫ t

n

Sλ(t− r)hR̂(θnω)(u(r))dω(r)

= Sλ(t)x+

n−1∑
j=0

Sλ(t− j − 1)

(∫ 1

0

Sλ(1− r)fR̂(θjω)(u
j(r))dr

+

∫ 1

0

Sλ(1− r)hR̂(θjω)(u
j(r))dθjω(r)

)
+

∫ t−n

0

Sλ(t−n−r)fR̂(θnω)(u
n(r))dr+

∫ t−n

0

Sλ(t−n−r)hR̂(θnω)(u
n(r))dθnω(r),

where this splitting is a consequence of the additivity of the integrals, Theorem 2.4
and (2.1).

Notice that in all the integrals on the right-hand side of the previous expression,
the time varies in the interval [0, 1] (in the last two integrals, [0, t− n] is contained in
[0, 1]). Hence, we are going to estimate the Hölder-norm of all these terms setting now
T1 = 0 and T2 = 1. Due to the presence of the semigroup Sλ as a factor in all terms
under the sum, in the following estimates we do not need to consider the β, ρ-norm
but the β-norm, that is, in what follows ρ = 0.

Note that by (4.3) we have∥∥∥∥∫ ·
0

Sλ(· − r)fR̂(θnω)(u
n(r))dr

∥∥∥∥
∞
≤ R(θnω)LDχ‖un‖∞.

For the Hölder-seminorm, thanks to (3.4),∣∣∣∣∣∣∣∣∣∣∣∣∫ ·
0

Sλ(· − r)fR̂(θnω)(u
n(r))dr

∣∣∣∣∣∣∣∣∣∣∣∣
β

= sup
0≤s<t≤1

∥∥∥∥ ∫ ts Sλ(t−r)fR̂(θnω)(u
n(r))dr+

∫ s
0

(Sλ(t−r)− Sλ(s−r))fR̂(θnω)(u
n(r))dr

∥∥∥∥
(t−s)β

≤ sup
0≤s<t≤1

(
(t− s)1−β sup

r∈[s,t]

(‖Sλ(t− r)‖L(`2)‖fR̂(θnω)(u
n(r))‖)

)
+ sup

0≤s<t≤1

(
s

(t− s)β
sup
r∈[0,s]

(‖Sλ(t− r)− Sλ(s− r)‖L(`2)‖fR̂(θnω)(u
n(r))‖)

)
≤ R(θnω)LDχ‖un‖∞ + ‖Aλ‖R(θnω)LDχ‖un‖∞.

Then ∥∥∥∥∫ ·
0

Sλ(· − r)fR̂(θnω)(u
n(r))dr

∥∥∥∥
β

≤ (2 + ‖Aλ‖)R(θnω)LDχ‖un‖β .

On the other hand, since h(0) = 0, by (4.4) and (4.5) we get

‖hR̂(θnω)(u(·))‖β = sup
t∈[0,1]

‖hR̂(θnω)(u(t))‖L2(`2)

+ sup
0≤r<q≤1

‖hR̂(θnω)(u(r))− hR̂(θnω)(u(q))‖L2(`2)

(r − q)β

≤ LDχR(θnω)‖u‖β .
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For the stochastic integral, thanks to (3.12) and (3.13) we obtain∥∥∥∥∫ ·
0

Sλ(· − r)hR̂(θnω)(u
n(r))dθnω(r)

∥∥∥∥
β

≤ cβ,β′ |||θnω|||β′ (1 + ‖Aλ‖)(2 + ‖Aλ‖)‖hR̂(θnω)(u
n(·))‖β

≤ LDχcβ,β′ |||θnω|||β′ (1 + ‖Aλ‖)(2 + ‖Aλ‖)R(θnω)‖un‖β ,

where cβ,β′ denotes a constant that only depends on β and β′.
For the terms under the sum we have∥∥∥∥Sλ(· − j − 1)

∫ 1

0

Sλ(1− r)fR̂(θjω)(u
j(r))dr

∥∥∥∥
β,n,n+1

= ‖Sλ(· − j − 1)‖β,n,n+1

∥∥∥∥∫ 1

0

Sλ(1− r)fR̂(θjω)(u
j(r))dr

∥∥∥∥
≤ ‖Sλ(· − j − 1)‖β,n,n+1

∥∥∥∥∫ ·
0

Sλ(· − r)fR̂(θjω)(u
j(r))dr

∥∥∥∥
∞
,

and from Lemma 3.1,

‖Sλ(· − j − 1)‖β,n,n+1 ≤ (1 + ‖Aλ‖)e−λ(n−j−1),

so that ∥∥∥∥Sλ(· − j − 1)

∫ 1

0

Sλ(1− r)fR̂(θjω)(u
j(r))dr

∥∥∥∥
β,n,n+1

≤ (1 + ‖Aλ‖)e−λ(n−j−1)R(θjω)LDχ‖uj‖β .

Following similar steps, thanks to (3.12) we have∥∥∥∥Sλ(· − j − 1)

∫ 1

0

Sλ(1− r)hR̂(θjω)(u
j(r))dθjω(r)

∥∥∥∥
β,n,n+1

≤ LDχcβ,β′ |||θjω|||β′ (1 + ‖Aλ‖)2e−λ(n−j−1)R(θjω)‖uj‖β .

Therefore, taking the ‖ · ‖β,n,n+1 norm of the different terms in (4.7), applying
the triangle inequality, and in view of the above estimates, we obtain

‖un‖β ≤ ‖Sλ‖β,n,n+1‖x‖+ C

n−1∑
j=0

R(θjω)(1 + |||θjω|||β′)‖uj‖βe−λ(n−j−1)

(4.8)
+ CR(θnω)(1 + |||θnω|||β′)‖un‖β ,

where C = max{1, cβ,β′}LDχ(1 + ‖Aλ‖)(2 + ‖Aλ‖).
Let now ε ∈ (0, 1), which will be determined later more precisely. Define the

variables R and R̂ as follows:

R(ω) =
ε

2C(1 + |||ω|||β′)

and

R̂(ω) = sup

{
r̂ ∈ [0, δ] : ‖Df(v)‖L(`2) + ‖Dh(v)‖L(`2,L2(`2)) ≤ R(ω),

for all v ∈ B̄(0, r̂)

}
.
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R̂(ω) is a random variable; see [20]. In addition, since |||ω|||β′ is tempered from above

then R is tempered from below. According to Lemma A.3 it follows that R̂ is tempered
from below. In the contrary case we have ω ∈ Ω, µ ∈ R+ \{0}∪{+∞} and a sequence
(ti)i∈N tending to +∞ or −∞ such that

R̂(θtiω) ≤ e−µ|ti|.

But then for sufficiently large i we have

R(θtiω) ≤ κe−µ|ti|,

contradicting the temperedness of R (here we have applied Lemma A.3, with V = `2,
W = L(`2) × L(`2, L2(`2)) and the function F (z) = (Df(z), Dh(z)). Notice that
the assumptions of that lemma are fulfilled thanks to the regularity properties of the
functions f and h. In particular, we need any fi to be two times differentiable.

With the above choice of R, coming back to (4.8), since ε < 1 we obtain

1

2
‖un‖β ≤‖Sλ‖β,n,n+1‖x‖+

ε

2

n−1∑
j=0

e−λ(n−j−1)‖uj‖β ,

hence

‖un‖β ≤2(1 + ‖Aλ‖)‖x‖e−λn + ε

n−1∑
j=0

e−λ(n−j−1)‖uj‖β .

Defining yn = ‖un‖βeλn, c = 2(1 + ‖Aλ‖), and gj = εeλ, Lemma A.1 ensures that

yn ≤ 2(1 + ‖Aλ‖)‖x‖
n−1∏
i=0

(1 + εeλ) = 2(1 + ‖Aλ‖)‖x‖(1 + εeλ)n,

hence

‖un‖β ≤ 2(1 + ‖Aλ‖)‖x‖e−n(λ−log(1+εeλ)).(4.9)

On the other hand, due to Lemma A.2, since R̂(ω)/2 is tempered from below,
we can find a zero neighborhood U depending on ω such that for x contained in this
neighborhood we have

(4.10) ‖un‖β ≤
R̂(θnω)

2
for all n ∈ Z+,

As we will show in the next result, (4.10) is a crucial estimate to prove that the
sequence of truncated solutions (un)n∈N defines a solution of (3.10) on R+. In fact,
thanks to the previous considerations, we can state the main result of the paper.

Theorem 4.3. Suppose that conditions (A1)–(A4) and (A3′)–(A4′) hold and con-
sider ε(λ) = ε ∈ (0, 1− e−λ). Then the trivial solution is exponentially stable with an
exponential rate less than or equal to µ < λ− log(1 + εeλ).

Proof. First of all, let us prove that u given by (4.6) is a solution of our original
stochastic lattice system. In fact, from (4.10) we deduce that for any j ∈ Z+ and any
r ∈ [0, 1] we have that

‖uj(r)‖ ≤ R̂(θjω)

2
.
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Consequently χR̂(θjω)(u
j(r)) = uj(r), hence

fR̂(θjω)(u
j(r)) = f(uj(r)), hR̂(θjω)(u

j(r)) = h(uj(r))

for any r ∈ [0, 1] and j ∈ Z+. Then u given by (4.6), where un solves (4.2), is a
solution of (3.10) on R+.

Now we show the exponential stability of the trivial solution, according to
Definition 4.1. Take ε ∈ (0, 1−e−λ), ε̂ > 0, small enough and µ < λ− log(1+ εeλ)− ε̂.
From (4.9) we derive that there exist T0(ω, ε) ∈ N and a neighborhood of zero U(ω)
such that if x ∈ U(ω), for t ≥ T0(ω, ε)

‖ϕ(t, ω, x)‖ ≤ α1(ω)e−(λ−log(1+εeλ)−ε̂)t ≤ α1(ω)e−µt,

where the positive random variable α1(ω) depends on the coefficients κ and ‖Aλ‖.
On the other hand, from (4.10) we derive

sup
x∈U(ω),t∈[0,T0(ω,ε)]

‖ϕ(t, ω, x)‖ ≤ sup
x∈U(ω),0≤n≤T0(ω,ε)

‖un‖β ≤ α2(ω)e−µt,

where

α2(ω) = sup
0≤n≤T0(ω,ε)

R̂(θnω)

2
eµT0 .

Therefore,

sup
x∈U(ω)

‖ϕ(t, ω, x)‖ ≤ sup
x∈U(ω),t∈[0,T0(ω,ε)]

‖ϕ(t, ω, x)‖+ sup
x∈U(ω),t≥T0(ω,ε)

‖ϕ(t, ω, x)‖

≤ (α1(ω) + α2(ω))e−µt.

Appendix A. In this section we present some technical results that we have
used in section 4.

First of all, we introduce a discrete Gronwall-like lemma, whose proof can be
derived easily from Lemma 100 in [17].

Lemma A.1. Let (yn) and (gn) be nonnegative sequences and c a nonnegative
constant. If

yn ≤ c+

n−1∑
j=0

gjyj ,

then

yn ≤ c
n−1∏
j=0

(1 + gj).

Lemma A.2. Suppose that Ri ≥ Cεe
−εi for any 0 < ε < σ and i ∈ N , where

Cε > 0. Let (vi)i∈N be a sequence such that vi ≤ v0e
−σi. Then for sufficiently small

v0 we have for any i ∈ N

vi ≤ Ri.

The proof of this result follows easily. Note that if, for instance, we assume that
a random variable R > 0 is tempered from below, then we can find a random variable
Cε > 0 such that vi < R(θiω) holds for v0 < Cε(ω).

The following result establishes the relationship between the random variables R
and R̂ as needed in section 3.
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Lemma A.3. Let (V, ‖ · ‖V ) and (W, ‖ · ‖W ) be some Banach spaces, δ > 0, and
let F 6≡ 0 be a function from B̄V (0, δ) into W with F (0) = 0 which is continuously
differentiable such that

sup
z∈B̄V (0,δ)

‖DF (z)‖L(V,W ) = κ <∞.

Consider the centered open balls BW (0, R), BV (0, R̂), where R > 0 and R̂ = R̂(R) ≤ δ
is the supremum of all numbers r̂ > 0 such that

BV (0, r̂) ⊂ F−1(BW (0, R)).

Then, for 0 ≤ R < sup{‖F (z)‖W , z ∈ B̄V (0, δ)}, we obtain

sup
z∈B̄V (0,R̂(R))

‖F (z)‖W ≤ R,
R̂(R)

R
≥ 1

κ
∈ (0,∞].(A.1)

Proof. Denote

fF : B̄V (0, δ)→ R+, fF (z) = ‖F (z)‖W , z ∈ B̄V (0, δ).

Let us define

R̂ = sup{r̂ ∈ [0, δ] : BV (0, r̂) ∩ f−1
F ({R}) = ∅}.

Note that f−1
F ({R}) 6= ∅ since R ∈ fF (B̄V (0, δ)). Moreover, the set defining R̂ is

nonempty since

f−1
F ([0, R)) ∩ f−1

F ({R}) = ∅, 0 ∈ f−1
F ([0, R));

therefore by the continuity of fF there exists always a positive r̂ such that BV (0, r̂) ⊂
f−1
F ([0, R)).

On the other hand, the ball BV (0, R̂) does not contain a ẑ such that R < fF (ẑ) =:
R1. In the other case, by the continuity of fF , the set fF (BV (0, ‖ẑ‖)) would contain
the interval [0, R1) which includes R and there would exist a z̃ ∈ V with

‖z̃‖ ≤ ‖ẑ‖ < R̂, fF (z̃) = R,

which contradicts the definition of R̂. Note that by the connectedness of balls their
images by a continuous function are intervals. Hence

BV (0, R̂) ∩ f−1
F ((R,∞)) = ∅ and B̄V (0, R̂) ∩ f−1

F ((R,∞)) = ∅,

which proves the first part of (A.1).
Furthermore, by the definition of R̂ for every ε > 0 sufficiently small there exist

xRε ∈ BV (0, R̂), with infε>0 ‖xRε ‖V > 0, and yRε ∈ f−1
F ({R}) such that ‖xRε −yRε ‖V < ε.

Furthermore, by Taylor’s formula

fF (xRε ) ≤ sup
z∈B̄V (0,ρ)

‖DF (z)‖L(V,W )‖xRε ‖V ,

and hence, applying again Taylor’s formula, we get

fF (yRε ) ≤ fF (xRε ) + ‖F (xRε )− F (yRε )‖W ≤ fF (xRε ) + ε sup
z∈B̄V (0,δ)

‖DF (z)‖L(V,W )

≤ sup
z∈B̄V (0,δ)

‖DF (z)‖L(V,W )(‖xRε ‖V + ε) ≤ κ(‖xRε ‖V + ε).
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Therefore,

R̂

R
= lim
ε→0

‖xRε ‖V
fF (yRε )

≥ 1

κ
lim
ε→0

‖xRε ‖V
‖xRε ‖V + ε

=
1

κ
.

Note that it is not necessary to consider F ≡ 0, because the results derived from
the last lemma follow trivially.
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