342 research outputs found

    Single-Session Transcranial Direct Current Stimulation Temporarily Improves Symptoms, Mood, and Self-Regulatory Control in Bulimia Nervosa: A Randomised Controlled Trial

    Get PDF
    BACKGROUND: Evidence suggests that pathological eating behaviours in bulimia nervosa (BN) are underpinned by alterations in reward processing and self-regulatory control, and by functional changes in neurocircuitry encompassing the dorsolateral prefrontal cortex (DLPFC). Manipulation of this region with transcranial direct current stimulation (tDCS) may therefore alleviate symptoms of the disorder. OBJECTIVE: This double-blind sham-controlled proof-of-principle trial investigated the effects of bilateral tDCS over the DLPFC in adults with BN. METHODS: Thirty-nine participants (two males) received three sessions of tDCS in a randomised and counterbalanced order: anode right/cathode left (AR/CL), anode left/cathode right (AL/CR), and sham. A battery of psychological/neurocognitive measures was completed before and after each session and the frequency of bulimic behaviours during the following 24-hours was recorded. RESULTS: AR/CL tDCS reduced eating disorder cognitions (indexed by the Mizes Eating Disorder Cognitions Questionnaire-Revised) when compared to AL/CR and sham tDCS. Both active conditions suppressed the self-reported urge to binge-eat and increased self-regulatory control during a temporal discounting task. Compared to sham stimulation, mood (assessed with the Profile of Mood States) improved after AR/CL but not AL/CR tDCS. Lastly, the three tDCS sessions had comparable effects on the wanting/liking of food and on bulimic behaviours during the 24 hours post-stimulation. CONCLUSIONS: These data suggest that single-session tDCS transiently improves symptoms of BN. They also help to elucidate possible mechanisms of action and highlight the importance of selecting the optimal electrode montage. Multi-session trials are needed to determine whether tDCS has potential for development as a treatment for adult BN

    Megakaryopoiesis impairment through acute innate immune signaling activation by azacitidine

    Get PDF
    Publisher Copyright: © 2022 Okoye-Okafor et al.Thrombocytopenia, prevalent in the majority of patients with myeloid malignancies, such as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML), is an independent adverse prognostic factor. Azacitidine (AZA), a mainstay therapeutic agent for stem cell transplant–ineligible patients with MDS/AML, often transiently induces or further aggravates disease-associated thrombocytopenia by an unknown mechanism. Here, we uncover the critical role of an acute type-I interferon (IFN-I) signaling activation in suppressing megakaryopoiesis in AZA-mediated thrombocytopenia. We demonstrate that megakaryocytic lineage-primed progenitors present IFN-I receptors and, upon AZA exposure, engage STAT1/SOCS1-dependent downstream signaling prematurely attenuating thrombopoietin receptor (TPO-R) signaling and constraining megakaryocytic progenitor cell growth and differentiation following TPO-R stimulation. Our findings directly implicate RNA demethylation and IFN-I signal activation as a root cause for AZA-mediated thrombocytopenia and suggest mitigation of TPO-R inhibitory innate immune signaling as a suitable therapeutic strategy to support platelet production, particularly during the early phases of AZA therapy.Peer reviewe

    Randomised controlled feasibility trial of real versus sham repetitive transcranial magnetic stimulation treatment in adults with severe and enduring anorexia nervosa: the TIARA study.

    Get PDF
    OBJECTIVE: Treatment options for severe, enduring anorexia nervosa (SE-AN) are limited. Non-invasive neuromodulation is a promising emerging intervention. Our study is a feasibility randomised controlled trial of repetitive transcranial magnetic stimulation (rTMS) in individuals with SE-AN, which aims to inform the design of a future large-scale trial. DESIGN: Double-blind, parallel group, two-arm, sham-controlled trial. SETTING: Specialist eating disorders centre. PARTICIPANTS: Community-dwelling people with anorexia nervosa, an illness duration of ≥3 years and at least one previous completed treatment. INTERVENTIONS: Participants received 20 sessions (administered over 4 weeks) of MRI-guided real or sham high-frequency rTMS to the left dorsolateral prefrontal cortex in addition to treatment-as-usual. OUTCOMES: Primary outcomes were recruitment, attendance and retention rates. Secondary outcomes included body mass index (BMI), eating disorder symptoms, mood, quality of life and rTMS safety and tolerability. Assessments were conducted at baseline, post-treatment and follow-up (ie, at 0 month, 1 month and 4 months post-randomisation). RESULTS: Thirty-four participants (17 per group) were randomly allocated to real or sham rTMS. One participant per group was withdrawn prior to the intervention due to safety concerns. Two participants (both receiving sham) did not complete the treatment. rTMS was safe and well tolerated. Between-group effect sizes of change scores (baseline to follow-up) were small for BMI (d=0.2, 95% CI -0.49 to 0.90) and eating disorder symptoms (d=0.1, 95% CI -0.60 to 0.79), medium for quality of life and moderate to large (d=0.61 to 1.0) for mood outcomes, all favouring rTMS over sham. CONCLUSIONS: The treatment protocol is feasible and acceptable to participants. Outcomes provide preliminary evidence for the therapeutic potential of rTMS in SE-AN. Largest effects were observed on variables assessing mood. This study supports the need for a larger confirmatory trial to evaluate the effectiveness of multi-session rTMS in SE-AN. Future studies should include a longer follow-up period and an assessment of cost-effectiveness. TRIAL REGISTRATION NUMBER: ISRCTN14329415; Pre-results

    Enforced Expression of the Transcriptional Coactivator OBF1 Impairs B Cell Differentiation at the Earliest Stage of Development

    Get PDF
    OBF1, also known as Bob.1 or OCA-B, is a B lymphocyte-specific transcription factor which coactivates Oct1 and Oct2 on B cell specific promoters. So far, the function of OBF1 has been mainly identified in late stage B cell populations. The central defect of OBF1 deficient mice is a severely reduced immune response to T cell-dependent antigens and a lack of germinal center formation in the spleen. Relatively little is known about a potential function of OBF1 in developing B cells. Here we have generated transgenic mice overexpressing OBF1 in B cells under the control of the immunoglobulin heavy chain promoter and enhancer. Surprisingly, these mice have greatly reduced numbers of follicular B cells in the periphery and have a compromised immune response. Furthermore, B cell differentiation is impaired at an early stage in the bone marrow: a first block is observed during B cell commitment and a second differentiation block is seen at the large preB2 cell stage. The cells that succeed to escape the block and to differentiate into mature B cells have post-translationally downregulated the expression of transgene, indicating that expression of OBF1 beyond the normal level early in B cell development is deleterious. Transcriptome analysis identified genes deregulated in these mice and Id2 and Id3, two known negative regulators of B cell differentiation, were found to be upregulated in the EPLM and preB cells of the transgenic mice. Furthermore, the Id2 and Id3 promoters contain octamer-like sites, to which OBF1 can bind. These results provide evidence that tight regulation of OBF1 expression in early B cells is essential to allow efficient B lymphocyte differentiation

    Efficacy and safety of a subacromial continuous ropivacaine infusion for post-operative pain management following arthroscopic rotator cuff surgery: A protocol for a randomised double-blind placebo-controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Major shoulder surgery often results in severe post-operative pain and a variety of interventions have been developed in an attempt to address this. The continuous slow infusion of a local anaesthetic directly into the operative site has recently gained popularity but it is expensive and as yet there is little conclusive evidence that it provides additional benefits over other methods of post-operative pain management.</p> <p>Methods/Design</p> <p>This will be a randomised, placebo-controlled trial involving 158 participants. Following diagnostic arthroscopy, all participants will undergo arthroscopic subacromial decompression with or without rotator cuff repair, all operations performed by a single surgeon. Participants, the surgeon, nurses caring for the patients and outcome assessors will be blinded to treatment allocation. All participants will receive a pre-incision bolus injection of 20 mls of ropivacaine 1% into the shoulder and an intra-operative intravenous bolus of parecoxib 40 mg. Using concealed allocation participants will be randomly assigned to active treatment (local anaesthetic ropivacaine 0.75%) or placebo (normal saline) administered continuously into the subacromial space by an elastomeric pump at 5 mls per hour post-operatively. Patient controlled opioid analgesia and oral analgesics will be available for breakthrough pain. Outcome assessment will be at 15, 30 and 60 minutes, 2, 4, 8, 12, 18 and 24 hours, and 2 or 4 months for decompression or decompression plus repair respectively.</p> <p>The primary end point will be average pain at rest over the first 12-hour post-operative period on a verbal analogue pain score. Secondary end points will be average pain at rest over the second 12-hour post-operative period, maximal pain at rest over the first and second 12-hour periods, amount of rescue medication used, length of inpatient stay and incidence of post-operative adhesive capsulitis.</p> <p>Discussion</p> <p>The results of this trial will contribute to evidence-based recommendations for the effectiveness of pain management modalities following arthroscopic rotator cuff surgery. If the local anaesthetic pain-buster provides no additional benefits over placebo then valuable resources can be put to better use in other ways.</p> <p>Trial registration</p> <p>Australian Clinical Trials Register Number ACTR12606000195550</p
    • …
    corecore