The role of the synthesis conditions on the cationic Fe/Mo ordering in
Sr2FeMoO6 double perovskite is addressed. It is shown that this ordering can be
controlled and varied systematically. The Fe/Mo ordering has a profound impact
on the saturation magnetization of the material. Using the appropriate
synthesis protocol a record value of 3.7muB/f.u. has been obtained. Mossbauer
analysis reveals the existence of two distinguishable Fe sites in agreement
with the P4/mmm symmetry and a charge density at the Fe(m+) ions significantly
larger than (+3) suggesting a Fe contribution to the spin-down conduction band.
The implications of these findings for the synthesis of Sr2FeMoO6 having
optimal magnetoresistance response are discussed.Comment: 9 pages, 4 figure